Implementation of Deterministic Weather Forecasting Systems Based on Ensemble–Variational Data Assimilation at Environment Canada. Part I: The Global System

AbstractA major set of changes was made to the Environment Canada global deterministic prediction system during the fall of 2014, including the replacement of four-dimensional variational data assimilation (4DVar) by four-dimensional ensemble–variational data assimilation (4DEnVar). The new system provides improved forecast accuracy relative to the previous system, based on results from two sets of two-month data assimilation and forecast experiments. The improvements are largest at shorter lead times, but significant improvements are maintained in the 120-h forecasts for most regions and vertical levels. The improvements result from the combined impact of numerous changes, in addition to the use of 4DEnVar. These include an improved treatment of radiosonde and aircraft observations, an improved radiance bias correction procedure, the assimilation of ground-based GPS data, a doubling of the number of assimilated channels from hyperspectral infrared sounders, and an improved approach for initializing model...

[1]  A. Zadra,et al.  Evaluation of Tropical Cyclones in the Canadian Global Modeling System: Sensitivity to Moist Process Parameterization , 2014 .

[2]  Chris Snyder,et al.  A Hybrid ETKF–3DVAR Data Assimilation Scheme for the WRF Model. Part II: Real Observation Experiments , 2008 .

[3]  Florence Rabier,et al.  Overview of global data assimilation developments in numerical weather‐prediction centres , 2005 .

[4]  Ming Hu,et al.  A GSI-Based Coupled EnSRF-En3DVar Hybrid Data Assimilation System for the Operational Rapid Refresh Model: Tests at a Reduced Resolution , 2014 .

[5]  Colin G. Jones,et al.  Using ARM Observations to Evaluate Cloud and Clear-Sky Radiation Processes as Simulated by the Canadian Regional Climate Model GEM , 2010 .

[6]  Ayrton Zadra,et al.  Representing Richardson Number Hysteresis in the NWP Boundary Layer , 2015 .

[7]  Quanhua Liu,et al.  An Improved Fast Microwave Water Emissivity Model , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[8]  R. Benoit,et al.  A Finite-Element Model of the Atmospheric Boundary Layer Suitable for Use with Numerical Weather Prediction Models , 1982 .

[9]  J. Kristjánsson,et al.  Condensation and Cloud Parameterization Studies with a Mesoscale Numerical Weather Prediction Model , 1989 .

[10]  Monique Tanguay,et al.  Extension of 3DVAR to 4DVAR: Implementation of 4DVAR at the Meteorological Service of Canada , 2007 .

[11]  D. Dee,et al.  Variational bias correction of satellite radiance data in the ERA‐Interim reanalysis , 2009 .

[12]  David D. Parrish,et al.  GSI 3DVar-Based Ensemble-Variational Hybrid Data Assimilation for NCEP Global Forecast System: Single-Resolution Experiments , 2013 .

[13]  P. L. Houtekamer,et al.  Toward Random Sampling of Model Error in the Canadian Ensemble Prediction System , 2010 .

[14]  R. Rotunno,et al.  Mesoscale Predictability of Moist Baroclinic Waves: Convection-Permitting Experiments and Multistage Error Growth Dynamics , 2007 .

[15]  Stéphane Laroche,et al.  Impact of Radiosonde Balloon Drift on Numerical Weather Prediction and Verification , 2013 .

[16]  R. Tibshirani,et al.  An introduction to the bootstrap , 1993 .

[17]  E. Lorenz The predictability of a flow which possesses many scales of motion , 1969 .

[18]  L. Wilson,et al.  The Canadian Updateable Model Output Statistics (UMOS) System: Validation against Perfect Prog , 2003 .

[19]  J. G. Charney,et al.  The Use of the Primitive Equations of Motion in Numerical Prediction , 1955 .

[20]  Seung-Jong Baek,et al.  Higher Resolution in an Operational Ensemble Kalman Filter , 2014 .

[21]  M. Tanguay,et al.  Four-Dimensional Variational Data Assimilation for the Canadian Regional Deterministic Prediction System , 2012 .

[22]  Pedro Viterbo,et al.  The land surface‐atmosphere interaction: A review based on observational and global modeling perspectives , 1996 .

[23]  Luc Fillion,et al.  The impact of a digital filter finalization technique in a global data assimilation system , 1995 .

[24]  Junhong Wang,et al.  Diurnal and Semidiurnal Tides in Global Surface Pressure Fields , 1999 .

[25]  Mark Buehner,et al.  Sea ice forecast verification in the Canadian Global Ice Ocean Prediction System , 2016 .

[26]  R. Daley Normal mode initialization , 1981 .

[27]  Xuguang Wang,et al.  GSI-Based Four-Dimensional Ensemble–Variational (4DEnsVar) Data Assimilation: Formulation and Single-Resolution Experiments with Real Data for NCEP Global Forecast System , 2014 .

[28]  C. Snyder,et al.  Mesoscale Energy Spectra of Moist Baroclinic Waves , 2013 .

[29]  Akio Arakawa,et al.  Finite-Difference Methods in Climate Modeling , 1988 .

[30]  Mark Buehner,et al.  Four-dimensional ensemble-variational data assimilation for global deterministic weather prediction , 2013 .

[31]  Craig S. Schwartz,et al.  Convection-Permitting Forecasts Initialized with Continuously Cycling Limited-Area 3DVAR, Ensemble Kalman Filter, and ``Hybrid'' Variational-Ensemble Data Assimilation Systems , 2013 .

[32]  Nils Gustafsson,et al.  Four-dimensional ensemble variational (4D-En-Var) data assimilation for the HIgh Resolution Limited Area Model (HIRLAM) , 2014 .

[33]  Vivian Lee,et al.  The Canadian Global Environmental Multiscale model on the Yin‐Yang grid system , 2011 .

[34]  Jean-Noël Thépaut,et al.  An improved general fast radiative transfer model for the assimilation of radiance observations , 2004 .

[35]  A. Lorenc,et al.  Operational implementation of a hybrid ensemble/4D‐Var global data assimilation system at the Met Office , 2013 .

[36]  R. Stull An Introduction to Boundary Layer Meteorology , 1988 .

[37]  Stéphane Bélair,et al.  Operational Implementation of the ISBA Land Surface Scheme in the Canadian Regional Weather Forecast Model. Part II: Cold Season Results , 2003 .

[38]  Stéphane Bélair,et al.  Boundary Layer and Shallow Cumulus Clouds in a Medium-Range Forecast of a Large-Scale Weather System , 2005 .

[39]  J. Thepaut,et al.  The ERA‐Interim reanalysis: configuration and performance of the data assimilation system , 2011 .

[40]  Qingnong Xiao,et al.  An Ensemble-Based Four-Dimensional Variational Data Assimilation Scheme. Part III: Antarctic Applications with Advanced Research WRF Using Real Data , 2013 .

[41]  Xuguang Wang,et al.  Assimilation of Radar Radial Velocity Data with the WRF Hybrid Ensemble–3DVAR System for the Prediction of Hurricane Ike (2008) , 2012 .

[42]  Jonathan Poterjoy,et al.  E3DVar: Coupling an Ensemble Kalman Filter with Three-Dimensional Variational Data Assimilation in a Limited-Area Weather Prediction Model and Comparison to E4DVar , 2013 .

[43]  Ovidiu Pancrati,et al.  Validation of Forecast Cloud Parameters from Multispectral AIRS Radiances , 2011 .

[44]  Lawrence L. Takacs,et al.  Data Assimilation Using Incremental Analysis Updates , 1996 .

[45]  The impact of mesoscale convective‐system potential‐vorticity anomalies on numerical‐weather‐prediction forecasts , 2001 .

[46]  M. Buehner,et al.  The Stratospheric Extension of the Canadian Global Deterministic Medium-Range Weather Forecasting System and Its Impact on Tropospheric Forecasts , 2012 .

[48]  Kayo Ide,et al.  An OSSE-Based Evaluation of Hybrid Variational–Ensemble Data Assimilation for the NCEP GFS. Part I: System Description and 3D-Hybrid Results , 2015 .

[49]  A. Staniforth,et al.  The Operational CMC–MRB Global Environmental Multiscale (GEM) Model. Part I: Design Considerations and Formulation , 1998 .

[50]  Neill E. Bowler,et al.  Comparison of Hybrid-4DEnVar and Hybrid-4DVar Data Assimilation Methods for Global NWP , 2015 .

[51]  Jean Côté,et al.  Staggered Vertical Discretization of the Canadian Environmental Multiscale (GEM) Model Using a Coordinate of the Log-Hydrostatic-Pressure Type , 2014 .

[52]  B. Casati,et al.  Impact of NOAA Ground-based GPS Observations on the Canadian Regional Analysis and Forecast System , 2008 .

[53]  J. Derber,et al.  A reformulation of the background error covariance in the ECMWF global data assimilation system , 1999 .

[54]  Y. Kuo,et al.  Comparing Limited-Area 3DVAR and Hybrid Variational-Ensemble Data Assimilation Methods for Typhoon Track Forecasts: Sensitivity to Outer Loops and Vortex Relocation , 2013 .

[55]  A. Staniforth,et al.  The Operational CMC–MRB Global Environmental Multiscale (GEM) Model. Part II: Results , 1998 .

[56]  Y. Rochon,et al.  Impact of data assimilation filtering methods on the mesosphere , 2007 .

[57]  Paul Poli,et al.  Diagnosis of observation, background and analysis‐error statistics in observation space , 2005 .

[58]  A. Simmons,et al.  The ECMWF operational implementation of four‐dimensional variational assimilation. I: Experimental results with simplified physics , 2007 .

[59]  S. Schubert,et al.  MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications , 2011 .

[60]  Stephen J. Thomas,et al.  A new adiabatic kernel for the MC2 model , 1998 .

[61]  John Derber,et al.  The Use of TOVS Cloud-Cleared Radiances in the NCEP SSI Analysis System , 1998 .

[62]  A. M. Clayton,et al.  On the Relationship between Incremental Analysis Updating and Incremental Digital Filtering , 2004 .

[63]  M. Buehner,et al.  Intercomparison of Variational Data Assimilation and the Ensemble Kalman Filter for Global Deterministic NWP. Part I: Description and Single-Observation Experiments , 2010 .

[64]  Fuqing Zhang,et al.  E4DVar: Coupling an Ensemble Kalman Filter with Four-Dimensional Variational Data Assimilation in a Limited-Area Weather Prediction Model , 2012 .

[65]  Jean-François Caron,et al.  The Canadian Regional Data Assimilation and Forecasting System , 2010 .

[66]  A. Lorenc,et al.  The Met Office global four‐dimensional variational data assimilation scheme , 2007 .

[67]  Chris Snyder,et al.  A Hybrid ETKF-3DVAR Data Assimilation Scheme for the WRF Model. Part I: Observing System Simulation Experiment , 2008 .

[68]  Laurent Arnaud,et al.  Snow spectral albedo at Summit, Greenland: measurements and numerical simulations based on physical and chemical properties of the snowpack , 2013 .

[69]  P. Courtier,et al.  A strategy for operational implementation of 4D‐Var, using an incremental approach , 1994 .

[70]  Peter Lynch,et al.  Initialization of the HIRLAM Model Using a Digital Filter , 1992 .

[71]  Xuguang Wang,et al.  Application of the WRF Hybrid ETKF–3DVAR Data Assimilation System for Hurricane Track Forecasts , 2011 .

[72]  P. L. Houtekamer,et al.  Verification of an Ensemble Prediction System against Observations , 2007 .

[73]  Seung-Jong Baek,et al.  Radar Data Assimilation in the Canadian High-Resolution Ensemble Kalman Filter System: Performance and Verification with Real Summer Cases , 2014 .

[74]  M. Buehner,et al.  Intercomparison of Variational Data Assimilation and the Ensemble Kalman Filter for Global Deterministic NWP. Part II: One-Month Experiments with Real Observations , 2010 .