Evolution of Organic Aerosols in the Atmosphere

Framework for Change Organic aerosols make up 20 to 90% of the particulate mass of the troposphere and are important factors in both climate and human heath. However, their sources and removal pathways are very uncertain, and their atmospheric evolution is poorly characterized. Jimenez et al. (p. 1525; see the Perspective by Andreae) present an integrated framework of organic aerosol compositional evolution in the atmosphere, based on model results and field and laboratory data that simulate the dynamic aging behavior of organic aerosols. Particles become more oxidized, more hygroscopic, and less volatile with age, as they become oxygenated organic aerosols. These results should lead to better predictions of climate and air quality. Organic aerosols are not compositionally static, but they evolve dramatically within hours to days of their formation. Organic aerosol (OA) particles affect climate forcing and human health, but their sources and evolution remain poorly characterized. We present a unifying model framework describing the atmospheric evolution of OA that is constrained by high–time-resolution measurements of its composition, volatility, and oxidation state. OA and OA precursor gases evolve by becoming increasingly oxidized, less volatile, and more hygroscopic, leading to the formation of oxygenated organic aerosol (OOA), with concentrations comparable to those of sulfate aerosol throughout the Northern Hemisphere. Our model framework captures the dynamic aging behavior observed in both the atmosphere and laboratory: It can serve as a basis for improving parameterizations in regional and global models.

D. R. Worsnop | C. E. Kolb | Y. Kondo | D. Salcedo | T. B. Onasch | L. R. Williams | Y. M. Zhang | M. R. Alfarra | D. R. Collins | U. Baltensperger | S. Herndon | A. Robinson | J. Jimenez | K. Džepina | D. Salcedo | D. Worsnop | L. Williams | T. Onasch | J. Jayne | Y. Kondo | M. Cubison | J. A. Huffman | M. Kulmala | C. Kolb | A. Middlebrook | P. DeCarlo | I. Ulbrich | M. Canagaratna | Q. Zhang | A. Prévôt | C. Hueglin | U. Baltensperger | R. Griffin | J. Allan | K. Docherty | A. Laaksonen | M. Alfarra | H. Coe | A. Takami | Y. Sun | T. Miyoshi | A. Shimono | J. Schneider | F. Drewnick | S. Borrmann | S. Weimer | P. Williams | K. Bower | L. Cottrell | J. Rautiainen | J. Y. Sun | Y. Zhang | T. Raatikainen | K. Demerjian | S. Hatakeyama | M. Ehn | A. Aiken | K. Wilson | J. Tomlinson | N. Ng | J. Kroll | N. Donahue | A. Grieshop | E. Wood | D. Sueper | J. T. Jayne | L. Cottrell | I. M. Ulbrich | J. L. Jimenez | J. Dunlea | V. Lanz | M. R. Canagaratna | A. Shimono | P. F. DeCarlo | K. R. Wilson | H. Coe | A. Trimborn | M. Kulmala | C. Hueglin | A. M. Middlebrook | A. L. Robinson | S. Borrmann | F. Drewnick | S. Weimer | S. C. Herndon | Q. Zhang | V. A. Lanz | J. Schneider | N. M. Donahue | A. S. H. Prevot | J. H. Kroll | J. D. Allan | N. L. Ng | A. C. Aiken | K. S. Docherty | A. P. Grieshop | J. Duplissy | J. D. Smith | Y. L. Sun | J. Tian | A. Laaksonen | T. Raatikainen | J. Rautiainen | P. Vaattovaara | M. Ehn | J. M. Tomlinson | M. J. Cubison | P. I. Williams | K. Bower | K. Demerjian | R. Griffin | A. Takami | T. Miyoshi | S. Hatakeyama | J. Y Sun | K. Dzepina | J. R. Kimmel | D. Sueper | A. M. Trimborn | E. C. Wood | J. Kimmel | J. Duplissy | J. Dunlea | J. Tian | J. D. Smith | P. Vaattovaara | Y. M. Zhang | J. Jimenez | A. Robinson

[1]  M. Facchini,et al.  A simplified model of the water soluble organic component of atmospheric aerosols , 2001 .

[2]  John H Seinfeld,et al.  Apportionment of primary and secondary organic aerosols in southern California during the 2005 study of organic aerosols in riverside (SOAR-1). , 2008, Environmental science & technology.

[3]  Douglas R. Worsnop,et al.  Chemically-resolved aerosol volatility measurements from two megacity field studies , 2009 .

[4]  D. Rader,et al.  Application of the tandem differential mobility analyzer to studies of droplet growth or evaporation , 1986 .

[5]  A. Robinson,et al.  Laboratory investigation of photochemical oxidation of organic aerosol from wood fires 2: analysis of aerosol mass spectrometer data , 2008 .

[6]  Allen L Robinson,et al.  Rethinking Organic Aerosols: Semivolatile Emissions and Photochemical Aging , 2007, Science.

[7]  Qi Zhang,et al.  Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically‐influenced Northern Hemisphere midlatitudes , 2007 .

[8]  M. Molina,et al.  Secondary organic aerosol formation from anthropogenic air pollution: Rapid and higher than expected , 2006 .

[9]  M. Petters,et al.  A single parameter representation of hygroscopic growth and cloud condensation nucleus activity , 2006 .

[10]  R. Derwent,et al.  Simulating regional scale secondary organic aerosol formation during the TORCH 2003 campaign in the southern UK , 2005 .

[11]  D. R. Worsnop,et al.  Hydrocarbon-like and oxygenated organic aerosols in Pittsburgh: insights into sources and processes of organic aerosols , 2005 .

[12]  Christoph Hueglin,et al.  Source apportionment of submicron organic aerosols at an urban site by factor analytical modelling of aerosol mass spectra , 2007 .

[13]  A. Goldstein,et al.  Known and Unexplored Organic Constituents in the Earth's Atmosphere , 2007 .

[14]  Allen L. Robinson,et al.  Contribution of motor vehicle emissions to organic carbon and fine particle mass in Pittsburgh, Pennsylvania: Effects of varying source profiles and seasonal trends in ambient marker concentrations , 2006 .

[15]  J. Pankow,et al.  The carbon number-polarity grid: A means to manage the complexity of the mix of organic compounds when modeling atmospheric organic particulate matter , 2009 .

[16]  John H. Seinfeld,et al.  Chemistry of secondary organic aerosol: Formation and evolution of low-volatility organics in the atmosphere , 2008 .

[17]  D. Salcedo,et al.  A missing sink for gas‐phase glyoxal in Mexico City: Formation of secondary organic aerosol , 2007 .

[18]  A. Robinson,et al.  Laboratory measurements of the heterogeneous oxidation of condensed-phase organic molecular makers for meat cooking emissions. , 2008, Environmental science & technology.

[19]  James M. Roberts,et al.  Budget of organic carbon in a polluted atmosphere: Results from the New England Air Quality Study in 2002 , 2005 .

[20]  John H. Seinfeld,et al.  The formation, properties and impact of secondary organic aerosol: current and emerging issues , 2009 .

[21]  Ann M. Middlebrook,et al.  Single-particle mass spectrometry of tropospheric aerosol particles , 2006 .

[22]  Louisa Emmons,et al.  © Author(s) 2008. This work is distributed under the Creative Commons Attribution 3.0 License. Atmospheric Chemistry and Physics Fast airborne aerosol size and chemistry measurements above , 2008 .

[23]  Manvendra K. Dubey,et al.  Correlation of secondary organic aerosol with odd oxygen in Mexico City , 2008 .

[24]  André Nel,et al.  ATMOSPHERE: Enhanced: Air Pollution-Related Illness: Effects of Particles , 2005 .

[25]  J. Jimenez,et al.  Interpretation of organic components from Positive Matrix Factorization of aerosol mass spectrometric data , 2008 .

[26]  C E Kolb,et al.  Guest Editor: Albert Viggiano CHEMICAL AND MICROPHYSICAL CHARACTERIZATION OF AMBIENT AEROSOLS WITH THE AERODYNE AEROSOL MASS SPECTROMETER , 2022 .

[27]  Qi Zhang,et al.  O/C and OM/OC ratios of primary, secondary, and ambient organic aerosols with high-resolution time-of-flight aerosol mass spectrometry. , 2008, Environmental science & technology.

[28]  J. Ashby References and Notes , 1999 .

[29]  James F. Pankow,et al.  An absorption model of the gas/aerosol partitioning involved in the formation of secondary organic aerosol , 1994 .

[30]  Barry J. Huebert,et al.  A large organic aerosol source in the free troposphere missing from current models , 2005 .

[31]  Jeffrey T. Kiehl,et al.  Twentieth century climate model response and climate sensitivity , 2007 .