Let Q be an alphabet with q elements. For any code C over Q of length n and for any two codewords a = (a1, . . . , an) and b = (b1, . . . , bn) in C, let $${D({\bf a, b}) = \{(x_1, . . . , x_n) \in {Q^n} : {x_i} \in \{a_i, b_i\}\,{\rm for}\,1 \leq i \leq n\}}$$. Let $${C^* = {{\bigcup}_{\rm {a,\,b}\in{C}}}D({\bf a, b})}$$. The code C is said to have the identifiable parent property (IPP) if, for any $${{\rm {\bf x}} \in C^*}$$, $${{\bigcap}_{{\rm x}{\in}D({\rm a,\,b})}\{{\bf a, b}\}\neq \emptyset} $$. Codes with the IPP were introduced by Hollmann et al [J. Combin. Theory Ser. A 82 (1998) 21–133]. Let F(n, q) = max{|C|: C is a q-ary code of length n with the IPP}.Tô and Safavi-Naini [SIAM J. Discrete Math. 17 (2004) 548–570] showed that $${3q + 6 - 6 \lceil\sqrt{q+1}\rceil \leq F(3, q) \leq 3q + 6 - \lceil 6 \sqrt{q+1}\rceil}$$, and determined F (3, q) precisely when q ≤ 48 or when q can be expressed as r2 + 2r or r2 + 3r +2 for r ≥ 2. In this paper, we establish a precise formula of F(3, q) for q ≥ 24. Moreover, we construct IPP codes of size F(3, q) for q ≥ 24 and show that, for any such code C and any $${{\rm {\bf x}} \in C^*}$$, one can find, in constant time, $${{\rm {\bf a}} \in C}$$ such that if $${{\rm {\bf x}} \in D ({\bf c, d})}$$ then $${{\rm {\bf a}} \in \{{\rm {\bf c, d}}\}}$$.
[1]
Jean-Paul M. G. Linnartz,et al.
On Codes with the Identifiable Parent Property
,
1998,
J. Comb. Theory, Ser. A.
[2]
J. A. Bondy,et al.
Graph Theory with Applications
,
1978
.
[3]
Reihaneh Safavi-Naini,et al.
On the Maximal Codes of Length 3 with the 2-Identifiable Parent Property
,
2004,
SIAM J. Discret. Math..
[4]
Noga Alon,et al.
Parent-Identifying Codes
,
2001,
J. Comb. Theory, Ser. A.
[5]
Miguel Soriano,et al.
Decoding codes with the identifiable parent property
,
2002,
Proceedings ISCC 2002 Seventh International Symposium on Computers and Communications.
[6]
János Körner,et al.
New Bounds for Perfect Hashing via Information Theory
,
1988,
Eur. J. Comb..
[7]
Wen Jiang,et al.
Maximum Codes with the Identifiable Parent Property
,
2006
.
[8]
Elwood S. Buffa,et al.
Graph Theory with Applications
,
1977
.