Maximum IPP Codes of Length 3

Let Q be an alphabet with q elements. For any code C over Q of length n and for any two codewords a = (a1, . . . , an) and b = (b1, . . . , bn) in C, let $${D({\bf a, b}) = \{(x_1, . . . , x_n) \in {Q^n} : {x_i} \in \{a_i, b_i\}\,{\rm for}\,1 \leq i \leq n\}}$$. Let $${C^* = {{\bigcup}_{\rm {a,\,b}\in{C}}}D({\bf a, b})}$$. The code C is said to have the identifiable parent property (IPP) if, for any $${{\rm {\bf x}} \in C^*}$$, $${{\bigcap}_{{\rm x}{\in}D({\rm a,\,b})}\{{\bf a, b}\}\neq \emptyset} $$. Codes with the IPP were introduced by Hollmann et al [J. Combin. Theory Ser. A 82 (1998) 21–133]. Let F(n, q) = max{|C|: C is a q-ary code of length n with the IPP}.Tô and Safavi-Naini [SIAM J. Discrete Math. 17 (2004) 548–570] showed that $${3q + 6 - 6 \lceil\sqrt{q+1}\rceil \leq F(3, q) \leq 3q + 6 - \lceil 6 \sqrt{q+1}\rceil}$$, and determined F (3, q) precisely when q ≤ 48 or when q can be expressed as r2 + 2r or r2 + 3r +2 for r ≥ 2. In this paper, we establish a precise formula of F(3, q) for q ≥ 24. Moreover, we construct IPP codes of size F(3, q) for q ≥ 24 and show that, for any such code C and any $${{\rm {\bf x}} \in C^*}$$, one can find, in constant time, $${{\rm {\bf a}} \in C}$$ such that if $${{\rm {\bf x}} \in D ({\bf c, d})}$$ then $${{\rm {\bf a}} \in \{{\rm {\bf c, d}}\}}$$.

[1]  Jean-Paul M. G. Linnartz,et al.  On Codes with the Identifiable Parent Property , 1998, J. Comb. Theory, Ser. A.

[2]  J. A. Bondy,et al.  Graph Theory with Applications , 1978 .

[3]  Reihaneh Safavi-Naini,et al.  On the Maximal Codes of Length 3 with the 2-Identifiable Parent Property , 2004, SIAM J. Discret. Math..

[4]  Noga Alon,et al.  Parent-Identifying Codes , 2001, J. Comb. Theory, Ser. A.

[5]  Miguel Soriano,et al.  Decoding codes with the identifiable parent property , 2002, Proceedings ISCC 2002 Seventh International Symposium on Computers and Communications.

[6]  János Körner,et al.  New Bounds for Perfect Hashing via Information Theory , 1988, Eur. J. Comb..

[7]  Wen Jiang,et al.  Maximum Codes with the Identifiable Parent Property , 2006 .

[8]  Elwood S. Buffa,et al.  Graph Theory with Applications , 1977 .