Efficient quantum dot sensitized solar cells via improved loading amount management

[1]  Zhenxiao Pan,et al.  Zn-Cu-In-S-Se Quinary "Green" Alloyed Quantum Dot-Sensitized Solar Cells with a Certified Efficiency of 14.4. , 2020, Angewandte Chemie.

[2]  H. Acar,et al.  Gold nanoparticle decorated carbon nanotube nanocomposite for dye- sensitized solar cell performance and stability enhancement , 2020 .

[3]  Yun‐Hi Kim,et al.  A Tuned Alternating D–A Copolymer Hole‐Transport Layer Enables Colloidal Quantum Dot Solar Cells with Superior Fill Factor and Efficiency , 2020, Advanced materials.

[4]  I. Mora‐Seró Current Challenges in the Development of Quantum Dot Sensitized Solar Cells , 2020, Advanced Energy Materials.

[5]  Jun Du,et al.  Spectroscopic insights into high defect tolerance of Zn:CuInSe2 quantum-dot-sensitized solar cells , 2020, Nature Energy.

[6]  Seulbee Lee,et al.  Adsorption and Cation Exchange Behavior of Zinc Sulfide (ZnS) on Mesoporous TiO2 Film and Its Applications to Solar Cells. , 2020, Langmuir : the ACS journal of surfaces and colloids.

[7]  Zhiming M. Wang,et al.  Core/Shell Quantum Dots Solar Cells , 2020, Advanced Functional Materials.

[8]  Yi Du,et al.  Ligand-assisted cation-exchange engineering for high-efficiency colloidal Cs1−xFAxPbI3 quantum dot solar cells with reduced phase segregation , 2020, Nature Energy.

[9]  Lianjing Zhao,et al.  Facile Secondary Deposition for Improving Quantum Dot Loading in Fabricating Quantum Dot Solar Cells. , 2019, Journal of the American Chemical Society.

[10]  M. Artemyev,et al.  Performance improvement strategies for quantum dot-sensitized solar cells: a review , 2019, Journal of Materials Chemistry A.

[11]  Jun Du,et al.  Cosensitized Quantum Dot Solar Cells with Conversion Efficiency over 12% , 2018, Advanced materials.

[12]  Juan Yu,et al.  Comparative advantages of Zn–Cu–In–S alloy QDs in the construction of quantum dot-sensitized solar cells , 2018, RSC advances.

[13]  Jihuai Wu,et al.  Counter electrodes in dye-sensitized solar cells. , 2017, Chemical Society reviews.

[14]  Zhiming M. Wang,et al.  Highly Stable Colloidal “Giant” Quantum Dots Sensitized Solar Cells , 2017 .

[15]  K. Ryan,et al.  Compound Copper Chalcogenide Nanocrystals. , 2017, Chemical reviews.

[16]  G. Boschloo,et al.  Characterization techniques for dye-sensitized solar cells , 2017 .

[17]  A. Polman,et al.  Photovoltaic materials: Present efficiencies and future challenges , 2016, Science.

[18]  Jin-Song Hu,et al.  Zn-Cu-In-Se Quantum Dot Solar Cells with a Certified Power Conversion Efficiency of 11.6%. , 2016, Journal of the American Chemical Society.

[19]  Marcus L. Böhm,et al.  Lead Telluride Quantum Dot Solar Cells Displaying External Quantum Efficiencies Exceeding 120% , 2015, Nano letters.

[20]  Jun Du,et al.  Optimizing the deposition of CdSe colloidal quantum dots on TiO2 film electrode via capping ligand induced self-assembly approach , 2015 .

[21]  Jung Ho Yu,et al.  Highly Efficient Copper-Indium-Selenide Quantum Dot Solar Cells: Suppression of Carrier Recombination by Controlled ZnS Overlayers. , 2015, ACS nano.

[22]  M. Bonn,et al.  Boosting power conversion efficiencies of quantum-dot-sensitized solar cells beyond 8% by recombination control. , 2015, Journal of the American Chemical Society.

[23]  X. Zhong,et al.  Capping Ligand-Induced Self-Assembly for Quantum Dot Sensitized Solar Cells. , 2015, The journal of physical chemistry letters.

[24]  Zhonglin Du,et al.  Optimization of TiO2 photoanode films for highly efficient quantum dot-sensitized solar cells , 2014 .

[25]  J. Bisquert,et al.  Core/shell colloidal quantum dot exciplex states for the development of highly efficient quantum-dot-sensitized solar cells. , 2013, Journal of the American Chemical Society.

[26]  J. Bisquert,et al.  Effect of Organic and Inorganic Passivation in Quantum-Dot-Sensitized Solar Cells. , 2013, The journal of physical chemistry letters.

[27]  P. Kamat Quantum Dot Solar Cells. The Next Big Thing in Photovoltaics. , 2013, The journal of physical chemistry letters.

[28]  Y. Masumoto,et al.  Shell-thickness-dependent photoinduced electron transfer from CuInS2/ZnS quantum dots to TiO2 films , 2013 .

[29]  G. Cao,et al.  Enhanced Performance of CdS/CdSe Quantum Dot Cosensitized Solar Cells via Homogeneous Distribution of Quantum Dots in TiO2 Film , 2012 .

[30]  J. Luther,et al.  Peak External Photocurrent Quantum Efficiency Exceeding 100% via MEG in a Quantum Dot Solar Cell , 2011, Science.

[31]  Prathik Roy,et al.  Quantum dot-sensitized solar cells incorporating nanomaterials. , 2011, Chemical communications.

[32]  Alexey Y. Koposov,et al.  Quantum dot sensitized solar cell , 2011 .

[33]  P. Kamat,et al.  Understanding the role of the sulfide redox couple (S2-/S(n)2-) in quantum dot-sensitized solar cells. , 2011, Journal of the American Chemical Society.

[34]  Xiaoming Huang,et al.  Highly efficient CdS/CdSe-sensitized solar cells controlled by the structural properties of compact porous TiO2 photoelectrodes. , 2011, Physical chemistry chemical physics : PCCP.

[35]  P. Frantsuzov,et al.  Photoinduced electron transfer from semiconductor quantum dots to metal oxide nanoparticles , 2010, Proceedings of the National Academy of Sciences.

[36]  Prashant V Kamat,et al.  Beyond photovoltaics: semiconductor nanoarchitectures for liquid-junction solar cells. , 2010, Chemical reviews.

[37]  J. Luther,et al.  Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells. , 2010, Chemical reviews.

[38]  J. Bisquert,et al.  Modeling high-efficiency quantum dot sensitized solar cells. , 2010, ACS nano.

[39]  Gary Hodes,et al.  Comparison of Dye-and Semiconductor-Sensitized Porous Nanocrystalline Liquid Junction Solar Cells , 2008 .

[40]  Masaru Kuno,et al.  Size-dependent electron injection from excited CdSe quantum dots into TiO2 nanoparticles. , 2007, Journal of the American Chemical Society.

[41]  Hidetoshi Miura,et al.  High‐Efficiency Organic‐Dye‐ Sensitized Solar Cells Controlled by Nanocrystalline‐TiO2 Electrode Thickness , 2006 .

[42]  Seigo Ito,et al.  High molar extinction coefficient heteroleptic ruthenium complexes for thin film dye-sensitized solar cells. , 2006, Journal of the American Chemical Society.

[43]  Vaidyanathan Subramanian,et al.  Quantum dot solar cells. harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films. , 2006, Journal of the American Chemical Society.

[44]  Juan Bisquert,et al.  Influence of electrolyte in transport and recombination in dye-sensitized solar cells studied by impedance spectroscopy , 2005 .

[45]  Xuhui Sun,et al.  Interfacial engineering in colloidal “giant” quantum dots for high-performance photovoltaics , 2019, Nano Energy.

[46]  J. Bisquert,et al.  Quantum dot-sensitized solar cells. , 2018, Chemical Society reviews.