Mountain permafrost and recent Alpine rockfall events : a GIS-based approach to determine critical factors

Glacier retreat and permafrost changes, as related to climate change, are supposed to affect stability conditions of steep rock walls in cold mountain ranges. Several rock-fall events, which have occurred in the European Alps during the 20 th century, are possibly related to warm permafrost. This study undertakes a systematic parameterization of rock-fall events in order to increase information about thermal and topographic conditions under which rock instabilities develop in areas of mountain permafrost. Thermal conditions of historically documented starting zones are parameterized by applying either empirical rules or GIS-based spatial models; slope is derived from DTMs. Despite the relatively small number of events documented so far (around 20), the first results presented clearly indicate that the factor ‘permafrost’ must be considered in connection with rock-falls from high mountain slopes. Table 1. Geomorphometric parameters of the rock-fall events considered. The altitude relates to the uppermost point of the starting zone. H is the fall from the top of the scarp to the bottom of the accumulation, L the corresponding horizontal travel distance. The star in column Gl. indicates events that are situated in a glacial environment. n. Name Date Altitude Aspect Volume H L H/L Gl. Reference ______ ______ __ __ m a.s.l. 10 6 . m 3 m m 1 Triolet (I) 1717 3600 E 16-2

[1]  M. Hoelzle,et al.  Snowmelt Evolution Mapping Using an Energy Balance Approach over an Alpine Terrain , 2002 .

[2]  Michael C. R. Davies,et al.  The effect of rise in mean annual temperature on the stability of rock slopes containing ice‐filled discontinuities , 2001 .

[3]  M. Hoelzle,et al.  Using relict rockglaciers in GIS-based modelling to reconstruct Younger Dryas permafrost distribution patterns in the Err-Julier area, Swiss Alp , 2001 .

[4]  F. Keller,et al.  Automated mapping of mountain permafrost using the program PERMAKART within the geographical information system ARC/INFO , 1992 .

[5]  Stephan Gruber,et al.  Surface Temperatures in Steep Alpine Rock Faces-A Strategy for Regional-Scale , 2003 .

[6]  A. Kääb,et al.  Towards a palaeoclimatic model of rock-glacier formation in the Swiss Alps , 2000, Annals of Glaciology.

[7]  Martin Hoelzle,et al.  First results and interpretation of energy-flux measurements over Alpine permafrost , 2000, Annals of Glaciology.

[8]  W. Haeberli,et al.  BOREHOLE TEMPERATURES IN ALPINE PERMAFROST: A TEN YEAR SERIES. , 1998 .

[9]  M. Hoelzle Mapping and modelling of mountain permafrost distribution in the Alps , 1996 .

[10]  M. Guglielmin,et al.  Mountain permafrost and slope instability in the Italian Alps: The Val Pola Landslide , 1995 .

[11]  M. Hoelzle,et al.  Simulating the effects of mean annual air-temperature changes on permafrost distribution and glacier size: an example from the Upper Engadin, Swiss Alps , 1995, Annals of Glaciology.

[12]  C. Schindler,et al.  Die Ereignisse vom 18. April und 9. Mai 1991 bei Randa (VS): ein atypischer Bergsturz in Raten , 1993 .

[13]  J. Alean Ice avalanches and a landslide on Grosser Aletschgletscher , 1984 .

[14]  J. Coaz Statistik und Verbau der Lawinen in den Schweizeralpen : im Auftrag des eidgenössischen Departements des Innern , 1910 .