Dynamics of vesicle self-assembly and dissolution.

The dynamics of membranes is studied on the basis of a particle-based meshless surface model, which was introduced earlier [Phys. Rev. E 73, 021903 (2006)]. The model describes fluid membranes with bending energy and-in the case of membranes with boundaries-line tension. The effects of hydrodynamic interactions are investigated by comparing Brownian dynamics with a particle-based mesoscale solvent simulation (multiparticle collision dynamics). Particles self-assemble into vesicles via disk-shaped membrane patches. The time evolution of assembly is found to consist of three steps: particle assembly into discoidal clusters, aggregation of clusters into larger membrane patches, and finally vesicle formation. The time dependence of the cluster distribution and the mean cluster size is evaluated and compared with the predictions of Smoluchowski rate equations. On the other hand, when the line tension is suddenly decreased (or the temperature is increased), vesicles dissolve via pore formation in the membrane. Hydrodynamic interactions are found to speed up the dynamics in both cases. Furthermore, hydrodynamics makes vesicle more spherical in the membrane-closure process.

[1]  K. Takiguchi,et al.  Theoretical analysis of opening-up vesicles with single and two holes. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  M. Cates,et al.  Kinetic pathway of spontaneous vesicle formation , 2002 .

[3]  G. Debrégeas,et al.  Viscous bursting of suspended films. , 1995, Physical review letters.

[4]  H. Noguchi,et al.  Self-assembly of amphiphiles into vesicles: a Brownian dynamics simulation. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  Didier Roux,et al.  Preparation of monodisperse multilayer vesicles of controlled size and high encapsulation ratio. , 1993 .

[6]  J T Padding,et al.  Hydrodynamic and brownian fluctuations in sedimenting suspensions. , 2004, Physical review letters.

[7]  Udo Seifert,et al.  Configurations of fluid membranes and vesicles , 1997 .

[8]  S. Yukawa,et al.  Attraction-limited cluster-cluster aggregation of Ising dipolar particles. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  J. Kindt,et al.  Monte Carlo calculations of the free-energy landscape of vesicle formation and growth , 2005 .

[10]  Reinhard Lipowsky,et al.  Structure and dynamics of membranes , 1995 .

[11]  K. Bryskhe,et al.  Vesicle formation from temperature jumps in a nonionic surfactant system. , 2005, Journal of Physical Chemistry B.

[12]  David R. Nelson,et al.  Statistical mechanics of membranes and surfaces , 2004 .

[13]  A C Maggs,et al.  Computer simulations of self-assembled membranes. , 1991, Science.

[14]  S. Hyodo,et al.  Dissipative particle dynamics study of spontaneous vesicle formation of amphiphilic molecules , 2002 .

[15]  Hiroshi Furukawa,et al.  A dynamic scaling assumption for phase separation , 1985 .

[16]  Hirokazu Hotani,et al.  Giant liposomes: from membrane dynamics to cell morphogenesis , 1999 .

[17]  Lubensky,et al.  Hydrodynamics and dynamic fluctuations of fluid membranes. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[18]  H. Noguchi,et al.  Shape transitions of fluid vesicles and red blood cells in capillary flows. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[19]  K. Mortensen Structural studies of lamellar surfactant systems under shear , 2001 .

[20]  G Gaspari,et al.  The aspherity of random walks , 1986 .

[21]  L. Coderch,et al.  Direct formation of mixed micelles in the solubilization of phospholipid liposomes by Triton X‐100 , 1998, FEBS letters.

[22]  Oded Farago,et al.  Mesoscale computer modeling of lipid-DNA complexes for gene therapy. , 2005, Physical review letters.

[23]  T. Ihle,et al.  Stochastic rotation dynamics: a Galilean-invariant mesoscopic model for fluid flow. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  K. Esselink,et al.  Computer simulations of a water/oil interface in the presence of micelles , 1990, Nature.

[25]  Frank L. H. Brown,et al.  Implicit solvent simulation models for biomembranes , 2005, European Biophysics Journal.

[26]  J. Møller,et al.  The mechanism of detergent solubilization of liposomes and protein-containing membranes. , 1998, Biophysical journal.

[27]  A. Malevanets,et al.  Mesoscopic model for solvent dynamics , 1999 .

[28]  Paul Curnow,et al.  Membrane proteins, lipids and detergents: not just a soap opera. , 2004, Biochimica et biophysica acta.

[29]  Rao,et al.  Topology changes in fluid membranes. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[30]  Håkan Wennerström,et al.  The Colloidal Domain: Where Physics, Chemistry, Biology and Technology Meet , 1994 .

[31]  T. Biben,et al.  Steady to unsteady dynamics of a vesicle in a flow. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[32]  S. A. Shkulipa,et al.  Surface viscosity, diffusion, and intermonolayer friction: simulating sheared amphiphilic bilayers. , 2005, Biophysical journal.

[33]  T. Weiss,et al.  Dynamics of the self-assembly of unilamellar vesicles. , 2005, Physical review letters.

[34]  Michael H.G. Duits,et al.  Deformation of giant lipid bilayer vesicles in a shear flow , 1996 .

[35]  Olivier Sandre,et al.  Cascades of transient pores in giant vesicles: line tension and transport. , 2003, Biophysical journal.

[36]  M. Gradzielski Kinetics of morphological changes in surfactant systems , 2003 .

[37]  Olivier Sandre,et al.  Dynamics of transient pores in stretched vesicles. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[38]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[39]  R. Lipowsky,et al.  Shape transformations of vesicles with intramembrane domains. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[40]  P. Lancaster,et al.  Surfaces generated by moving least squares methods , 1981 .

[41]  Seifert,et al.  Fluid Vesicles in Shear Flow. , 1996, Physical review letters.

[42]  H. Ly,et al.  The influence of short-chain alcohols on interfacial tension, mechanical properties, area/molecule, and permeability of fluid lipid bilayers. , 2004, Biophysical journal.

[43]  A. Mark,et al.  Simulation of the spontaneous aggregation of phospholipids into bilayers. , 2001, Journal of the American Chemical Society.

[44]  Gerhard Gompper,et al.  Low-Reynolds-number hydrodynamics of complex fluids by multi-particle-collision dynamics , 2004 .

[45]  Gerhard Gompper,et al.  Self-assembling amphiphilic systems , 1995 .

[46]  Evan Evans,et al.  Dynamic strengths of molecular anchoring and material cohesion in fluid biomembranes , 2000 .

[47]  Gerhard Gompper,et al.  Network models of fluid, hexatic and polymerized membranes , 1997 .

[48]  K. Takiguchi,et al.  Capabilities of liposomes for topological transformation , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[49]  Peter Lindner,et al.  Pathway of the shear-induced transition between planar lamellae and multilamellar vesicles as studied by time-resolved scattering techniques , 2003 .

[50]  Solvent-free model for self-assembling fluid bilayer membranes: stabilization of the fluid phase based on broad attractive tail potentials. , 2005, The Journal of chemical physics.

[51]  P. Fromherz Lipid-vesicle structure: Size control by edge-active agents , 1983 .

[52]  S. Feller,et al.  Molecular dynamics simulations of lipid bilayers , 2000 .

[53]  Growth and scaling in anisotropic spinodal decomposition , 2002, cond-mat/0209314.

[54]  Raymond Kapral,et al.  Mesoscopic description of solvent effects on polymer dynamics. , 2006, The Journal of chemical physics.

[55]  J. M. Yeomans,et al.  Dynamics of short polymer chains in solution , 2000 .

[56]  Witten,et al.  Universal kinetics in reaction-limited aggregation. , 1987, Physical review letters.

[57]  Hiroshi Noguchi,et al.  Meshless membrane model based on the moving least-squares method. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[58]  M E Cates,et al.  Kinetics of the micelle-to-vesicle transition: aqueous lecithin-bile salt mixtures. , 2003, Biophysical journal.

[59]  Evan Evans,et al.  Dynamic tension spectroscopy and strength of biomembranes. , 2003, Biophysical journal.

[60]  Hiroshi Noguchi,et al.  Fluid vesicles with viscous membranes in shear flow. , 2004, Physical review letters.

[61]  W. Helfrich Elastic Properties of Lipid Bilayers: Theory and Possible Experiments , 1973, Zeitschrift fur Naturforschung. Teil C: Biochemie, Biophysik, Biologie, Virologie.

[62]  Samuel A. Safran,et al.  Statistical Thermodynamics Of Surfaces, Interfaces, And Membranes , 1994 .

[63]  Michael L. Klein,et al.  Coarse grain models and the computer simulation of soft materials , 2004 .

[64]  Mark A Fleming,et al.  Meshless methods: An overview and recent developments , 1996 .

[65]  Gerhard Gompper,et al.  Mobility and elasticity of self-assembled membranes. , 1999 .

[66]  J. F. Ryder,et al.  Transport coefficients of a mesoscopic fluid dynamics model , 2003, cond-mat/0302451.

[67]  A. Bray Theory of phase-ordering kinetics , 1994, cond-mat/9501089.