Perturbation response in feedforward networks

[1]  Karl-Erwin Großpietsch,et al.  Fault tolerance , 1994, IEEE Micro.

[2]  F. Vallet,et al.  Robustness in Multilayer Perceptrons , 1993, Neural Computation.

[3]  Paul W. Munro,et al.  Nets with Unreliable Hidden Nodes Learn Error-Correcting Codes , 1992, NIPS.

[4]  Alan F. Murray,et al.  Synaptic Weight Noise During MLP Learning Enhances Fault-Tolerance, Generalization and Learning Trajectory , 1992, NIPS.

[5]  Babak Hassibi,et al.  Second Order Derivatives for Network Pruning: Optimal Brain Surgeon , 1992, NIPS.

[6]  Chris Bishop,et al.  Exact Calculation of the Hessian Matrix for the Multilayer Perceptron , 1992, Neural Computation.

[7]  J. I. Minnix Fault tolerance of the backpropagation neural network trained on noisy inputs , 1992, [Proceedings 1992] IJCNN International Joint Conference on Neural Networks.

[8]  R.D. Clay,et al.  Fault tolerance training improves generalization and robustness , 1992, [Proceedings 1992] IJCNN International Joint Conference on Neural Networks.

[9]  S. Oh,et al.  Regularization using jittered training data , 1992, [Proceedings 1992] IJCNN International Joint Conference on Neural Networks.

[10]  Guido Bugmann,et al.  Direct Approaches to Improving the Robustness of Multilayer Neural Networks , 1992 .

[11]  Petri Koistinen,et al.  Using additive noise in back-propagation training , 1992, IEEE Trans. Neural Networks.

[12]  George Cybenko,et al.  Approximation by superpositions of a sigmoidal function , 1992, Math. Control. Signals Syst..

[13]  Chalapathy Neti,et al.  Maximally fault tolerant neural networks , 1992, IEEE Trans. Neural Networks.

[14]  G. Bolt,et al.  Fault models for artificial neural networks , 1991, [Proceedings] 1991 IEEE International Joint Conference on Neural Networks.

[15]  G. Bolt Assessing the reliability of artificial neural networks , 1991, [Proceedings] 1991 IEEE International Joint Conference on Neural Networks.

[16]  G. Bolt Fault tolerance of lateral interaction networks , 1991, [Proceedings] 1991 IEEE International Joint Conference on Neural Networks.

[17]  B. E. Segee,et al.  Fault tolerance of pruned multilayer networks , 1991, IJCNN-91-Seattle International Joint Conference on Neural Networks.

[18]  Pau-Choo Chung,et al.  Reliability characteristics of Hebbian-type associative memories in network implementation , 1991, IJCNN-91-Seattle International Joint Conference on Neural Networks.

[19]  Edward K. Blum,et al.  Approximation theory and feedforward networks , 1991, Neural Networks.

[20]  Jocelyn Sietsma,et al.  Creating artificial neural networks that generalize , 1991, Neural Networks.

[21]  Geoffrey E. Hinton Tensor Product Variable Binding and the Representation of Symbolic Structures in Connectionist Systems , 1991 .

[22]  Mark Jonathan Dzwonczyk,et al.  Quantitative failure models of feed-forward neural networks , 1991 .

[23]  Robert M. French,et al.  Using Semi-Distributed Representations to Overcome Catastrophic Forgetting in Connectionist Networks , 1991 .

[24]  Kurt Hornik,et al.  Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks , 1990, Neural Networks.

[25]  Vijay K. Samalam,et al.  Exhaustive Learning , 1990, Neural Computation.

[26]  C. H. Sequin,et al.  Fault tolerance in artificial neural networks , 1990, 1990 IJCNN International Joint Conference on Neural Networks.

[27]  Ali A. Minai,et al.  Back-propagation heuristics: a study of the extended delta-bar-delta algorithm , 1990, 1990 IJCNN International Joint Conference on Neural Networks.

[28]  Chalapathy Neti,et al.  Maximally fault-tolerant neural networks and nonlinear programming , 1990, 1990 IJCNN International Joint Conference on Neural Networks.

[29]  Thomas F. Krile,et al.  Reliability measures for Hebbian-type associative memories with faulty interconnections , 1990, 1990 IJCNN International Joint Conference on Neural Networks.

[30]  Ehud D. Karnin,et al.  A simple procedure for pruning back-propagation trained neural networks , 1990, IEEE Trans. Neural Networks.

[31]  James D. Keeler,et al.  Layered Neural Networks with Gaussian Hidden Units as Universal Approximations , 1990, Neural Computation.

[32]  Bernard Widrow,et al.  Sensitivity of feedforward neural networks to weight errors , 1990, IEEE Trans. Neural Networks.

[33]  Geoffrey E. Hinton,et al.  Distributed Representations , 1986, The Philosophy of Artificial Intelligence.

[34]  David E. Rumelhart,et al.  Predicting the Future: a Connectionist Approach , 1990, Int. J. Neural Syst..

[35]  George Cybenko,et al.  Approximation by superpositions of a sigmoidal function , 1989, Math. Control. Signals Syst..

[36]  H. White,et al.  Universal approximation using feedforward networks with non-sigmoid hidden layer activation functions , 1989, International 1989 Joint Conference on Neural Networks.

[37]  Barry W. Johnson,et al.  Modeling of fault tolerance in neural networks , 1989, 15th Annual Conference of IEEE Industrial Electronics Society.

[38]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[39]  Ken-ichi Funahashi,et al.  On the approximate realization of continuous mappings by neural networks , 1989, Neural Networks.

[40]  T. R. Damarla,et al.  Fault tolerance of neural networks , 1989, Proceedings. IEEE Energy and Information Technologies in the Southeast'.

[41]  Michael J. Carter,et al.  Operational Fault Tolerance of CMAC Networks , 1989, NIPS.

[42]  Yann LeCun,et al.  Optimal Brain Damage , 1989, NIPS.

[43]  R.J.F. Dow,et al.  Neural net pruning-why and how , 1988, IEEE 1988 International Conference on Neural Networks.

[44]  B. Irie,et al.  Capabilities of three-layered perceptrons , 1988, IEEE 1988 International Conference on Neural Networks.

[45]  Lorien Y. Pratt,et al.  Comparing Biases for Minimal Network Construction with Back-Propagation , 1988, NIPS.

[46]  Michael C. Mozer,et al.  Skeletonization: A Technique for Trimming the Fat from a Network via Relevance Assessment , 1988, NIPS.

[47]  Geoffrey E. Hinton,et al.  Learning internal representations by error propagation , 1986 .

[48]  James L. McClelland,et al.  Parallel distributed processing: explorations in the microstructure of cognition, vol. 1: foundations , 1986 .

[49]  P. Werbos,et al.  Beyond Regression : "New Tools for Prediction and Analysis in the Behavioral Sciences , 1974 .

[50]  J. Townsend Reliability of Measures. , 1953 .