Dielectric Function for Gold in Plasmonics Applications: Size Dependence of Plasmon Resonance Frequencies and Damping Rates for Nanospheres

Realistic representation of the frequency dependence of dielectric function of noble metals has a significant impact on the accuracy of description of their optical properties and farther applications in plasmonics, nanoscience, and nanotechnology. Drude-type models successfully used in describing material properties of silver, for gold are known to be not perfect above the threshold energy at 1.8 eV. We give the improved, simple dielectric function for gold which accounts for the frequency dependence of the interband transitions over 1.8 eV and, in addition, for the finite size effects in gold nanoparticles. On that basis, we provide the improved characterization of the spectral performance of gold nanoparticles. Furthermore, we give the direct size dependence of the resonance frequencies and total damping rates of localized surface plasmons of gold nanoparticles (retardation effects are taken into full account) in diverse dielectric environments. The results are compared to the data obtained experimentally for gold monodisperse colloidal nanospheres, as well with the experimental results of other authors.

[1]  Hristina Petrova,et al.  Contributions from radiation damping and surface scattering to the linewidth of the longitudinal plasmon band of gold nanorods: a single particle study. , 2006, Physical chemistry chemical physics : PCCP.

[2]  K. Catchpole,et al.  Plasmonic solar cells. , 2008, Optics express.

[3]  Naomi J. Halas,et al.  Geometrical parameters controlling sensitivity of nanoshell plasmon resonances to changes in dielectric environment , 2004 .

[4]  K. R. Catchpolea,et al.  Design principles for particle plasmon enhanced solar cells , 2008 .

[5]  Carsten Sönnichsen,et al.  Plasmons in metal nanostructures , 2001 .

[6]  K. Kolwas,et al.  Damping rates of surface plasmons for particles of size from nano- to micrometers; reduction of the nonradiative decay , 2012, 1211.4781.

[7]  Mei Xue,et al.  Light concentration and redistribution in polymer solar cells by plasmonic nanoparticles. , 2012, Nanoscale.

[8]  Vollmer,et al.  Width of cluster plasmon resonances: Bulk dielectric functions and chemical interface damping. , 1993, Physical review. B, Condensed matter.

[9]  A. Henglein,et al.  Surface chemistry of colloidal silver: surface plasmon damping by chemisorbed iodide, hydrosulfide (SH-), and phenylthiolate , 1993 .

[10]  A. Henglein Physicochemical properties of small metal particles in solution: "microelectrode" reactions, chemisorption, composite metal particles, and the atom-to-metal transition , 1993 .

[11]  Ashutosh Chilkoti,et al.  A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface. , 2002, Analytical chemistry.

[12]  Paul Mulvaney,et al.  Surface Plasmon Spectroscopy of Nanosized Metal Particles , 1996 .

[13]  Younan Xia,et al.  Dark-field microscopy studies of single metal nanoparticles: understanding the factors that influence the linewidth of the localized surface plasmon resonance. , 2008, Journal of materials chemistry.

[14]  Naomi J. Halas,et al.  Controlling the surface enhanced Raman effect via the nanoshell geometry , 2003 .

[15]  Pekka Pyykkö,et al.  Relativity and the periodic system of elements , 1979 .

[16]  Paul Mulvaney,et al.  Modelling the Optical Response of Gold Nanoparticles , 2008 .

[17]  Peter Nordlander,et al.  Optical properties of metallodielectric nanostructures calculated using the finite difference time domain method , 2004 .

[18]  K. Kolwas,et al.  The smallest free-electron sphere sustaining multipolar surface plasmon oscillation , 2006, 0804.2594.

[19]  Denise E. Charles,et al.  Scaling of Surface Plasmon Resonances in Triangular Silver Nanoplate Sols for Enhanced Refractive Index Sensing , 2011 .

[20]  D. Lynch,et al.  Handbook of Optical Constants of Solids , 1985 .

[21]  H. Ehrenreich,et al.  Optical Properties of Ag and Cu , 1962 .

[22]  Rostislav Bukasov,et al.  Highly tunable infrared extinction properties of gold nanocrescents. , 2007, Nano letters.

[23]  Marc Lamy de la Chapelle,et al.  Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method , 2005 .

[24]  T. Jenkins,et al.  High-resolution measurements of the bulk dielectric constants of single crystal gold with application to reflection anisotropy spectroscopy , 2003 .

[25]  D. Malacara-Hernández,et al.  PRINCIPLES OF OPTICS , 2011 .

[26]  M. Green,et al.  Plasmonics for photovoltaic applications , 2010 .

[27]  J. Zyss,et al.  Octupolar metal nanoparticles as optically driven, coherently controlled nanorotors , 2006 .

[28]  T Kobayashi,et al.  Local plasmon sensor with gold colloid monolayers deposited upon glass substrates. , 2000, Optics letters.

[29]  R. J. Bell,et al.  Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W. , 1985, Applied optics.

[30]  D. Fernig,et al.  Determination of size and concentration of gold nanoparticles from UV-vis spectra. , 2007, Analytical chemistry.

[31]  M. Shopa,et al.  Size characteristics of surface plasmons and their manifestation in scattering properties of metal particles , 2009 .

[32]  D. P. O'Neal,et al.  Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. , 2004, Cancer letters.

[33]  Peter Nordlander,et al.  Efficient dielectric function for FDTD simulation of the optical properties of silver and gold nanoparticles , 2007 .

[34]  Hye-Young Park,et al.  Size Correlation of Optical and Spectroscopic Properties for Gold Nanoparticles , 2007 .

[35]  Naomi J. Halas,et al.  Influence of dielectric function properties on the optical response of plasmon resonant metallic nanoparticles , 2004 .

[36]  K. Kolwas,et al.  Plasmonic abilities of gold and silver spherical nanoantennas in terms of size dependent multipolar resonance frequencies and plasmon damping rates , 2010, 1104.0565.

[37]  G. Mie Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen , 1908 .

[38]  J. Zhang,et al.  Plasmonic Optical Properties and Applications of Metal Nanostructures , 2008 .

[39]  P. Barber Absorption and scattering of light by small particles , 1984 .

[40]  Ichiro Fukai,et al.  A treatment by the FD‐TD method of the dispersive characteristics associated with electronic polarization , 1990 .

[41]  Michael Vollmer,et al.  Optical properties of metal clusters , 1995 .

[42]  R. Rosei,et al.  Splitting of the interband absorption edge in Au , 1975 .

[43]  Nikolai G. Khlebtsov,et al.  Optical properties and biomedical applications of plasmonic nanoparticles , 2010 .

[44]  Stéphane Berciaud,et al.  Observation of intrinsic size effects in the optical response of individual gold nanoparticles. , 2005, Nano letters.

[45]  P. Etchegoin,et al.  An analytic model for the optical properties of gold. , 2006, The Journal of chemical physics.

[46]  Lukas Novotny,et al.  Continuum generation from single gold nanostructures through near-field mediated intraband transitions , 2003 .

[47]  Alexandre V. Tishchenko,et al.  Singular Representation of Plasmon Resonance Modes to Optimize the Near- and Far-Field Properties of Metal Nanoparticles , 2015, Plasmonics.

[48]  Mikael Käll,et al.  Gold-silica-gold nanosandwiches: tunable bimodal plasmonic resonators. , 2007, Small.

[49]  Stephan Link,et al.  Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles , 1999 .

[50]  Naomi J. Halas,et al.  Plasmon response of nanoshell dopants in organic films: a simulation study , 2003 .

[51]  K. Kolwas,et al.  Simple analytic tool for spectral control of dipole plasmon resonance frequency for gold and silver nanoparticles , 2013 .

[52]  S. Foteinopoulou,et al.  Optical near-field excitations on plasmonic nanoparticle-based structures. , 2007, Optics express.

[53]  Michael J. Ford,et al.  Search for the Ideal Plasmonic Nanoshell: The Effects of Surface Scattering and Alternatives to Gold and Silver , 2009 .

[54]  S. Maier Plasmonics: Fundamentals and Applications , 2007 .

[55]  G. Schatz,et al.  An accurate electromagnetic theory study of surface enhancement factors for silver, gold, copper, lithium, sodium, aluminum, gallium, indium, zinc, and cadmium , 1987 .

[56]  Kadir Aslan,et al.  Plasmon light scattering in biology and medicine: new sensing approaches, visions and perspectives. , 2005, Current opinion in chemical biology.

[57]  P. Jain,et al.  Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model. , 2006, The journal of physical chemistry. B.

[58]  Thierry Laroche,et al.  Near-field optical properties of single plasmonic nanowires , 2006 .

[59]  Harry A. Atwater,et al.  Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit , 2000 .

[60]  K. Kolwas,et al.  Size dependence of multipolar plasmon resonance frequencies and damping rates in simple metal spherical nanoparticles , 2007, 0804.2156.

[61]  G. V. Chester,et al.  Solid State Physics , 2000 .

[62]  A. Urban Optothermal Manipulation of Phospholipid Membranes with Gold Nanoparticles , 2010 .

[63]  R. G. Barnes,et al.  Nuclear relaxation in the dideuteride of hafnium and titanium , 2003 .

[64]  Carsten Sönnichsen,et al.  Plasmon resonances in large noble-metal clusters , 2002 .

[65]  Naomi J. Halas,et al.  Playing with Plasmons: Tuning the Optical Resonant Properties of Metallic Nanoshells , 2005 .

[66]  Yang Wang,et al.  Foundations of Plasmonics , 2011 .

[67]  R. V. Van Duyne,et al.  Localized surface plasmon resonance spectroscopy and sensing. , 2007, Annual review of physical chemistry.

[68]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .