Rethinking search engines and recommendation systems

Novel approaches draw on the strength of game theoretic mechanism design.

[1]  Juliana Freire,et al.  A First Study on Temporal Dynamics of Topics on the Web , 2016, WWW.

[2]  Moshe Tennenholtz,et al.  The search duel: a response to a strong ranker , 2014, SIGIR.

[3]  W. Bruce Croft,et al.  Quality-biased ranking of web documents , 2011, WSDM '11.

[4]  Moshe Tennenholtz,et al.  The Probability Ranking Principle is Not Optimal in Adversarial Retrieval Settings , 2015, ICTIR.

[5]  Moshe Tennenholtz,et al.  Information Retrieval Meets Game Theory: The Ranking Competition Between Documents' Authors , 2017, SIGIR.

[6]  Moshe Tennenholtz,et al.  A Game Theoretic Analysis of the Adversarial Retrieval Setting , 2017, J. Artif. Intell. Res..

[7]  Stephen E. Robertson,et al.  A probabilistic model of information retrieval: development and comparative experiments - Part 1 , 2000, Inf. Process. Manag..

[8]  Tim Roughgarden,et al.  Algorithmic Game Theory , 2007 .

[9]  L. S. Shapley,et al.  17. A Value for n-Person Games , 1953 .

[10]  Sébastien Bubeck,et al.  Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems , 2012, Found. Trends Mach. Learn..

[11]  Thorsten Joachims,et al.  Accurately Interpreting Clickthrough Data as Implicit Feedback , 2017 .

[12]  Hector Garcia-Molina,et al.  Web Spam Taxonomy , 2005, AIRWeb.

[13]  Moshe Tennenholtz,et al.  Best Response Regression , 2017, NIPS.

[14]  Tim Roughgarden,et al.  How bad is selfish routing? , 2002, JACM.

[15]  Moshe Tennenholtz,et al.  Ranking Robustness Under Adversarial Document Manipulations , 2018, SIGIR.

[16]  Jon M. Kleinberg,et al.  Incentivizing exploration , 2014, EC.

[17]  Yeon-Koo Che,et al.  Optimal Design for Social Learning , 2015 .

[18]  Bhaskar Mitra,et al.  Neural Models for Information Retrieval , 2017, ArXiv.

[19]  Paul N. Bennett,et al.  Robust ranking models via risk-sensitive optimization , 2012, SIGIR '12.

[20]  Paul N. Bennett,et al.  Predicting content change on the web , 2013, WSDM.

[21]  W. Bruce Croft,et al.  Relevance-Based Language Models , 2001, SIGIR '01.

[22]  Yishay Mansour,et al.  Bayesian Exploration: Incentivizing Exploration in Bayesian Games , 2016, EC.

[23]  Moshe Tennenholtz,et al.  Approximate mechanism design without money , 2009, EC '09.

[24]  H. Varian Online Ad Auctions , 2009 .

[25]  Grace HuiYang,et al.  Dynamic Information Retrieval Modeling , 2016 .

[26]  Yishay Mansour,et al.  Bayesian Incentive-Compatible Bandit Exploration , 2018 .

[27]  S. Robertson The probability ranking principle in IR , 1997 .

[28]  Moshe Tennenholtz,et al.  A Game-Theoretic Approach to Recommendation Systems with Strategic Content Providers , 2018, NeurIPS.

[29]  Yishay Mansour,et al.  Implementing the “Wisdom of the Crowd” , 2013, Journal of Political Economy.

[30]  Yoav Shoham,et al.  An overview of combinatorial auctions , 2007, SECO.

[31]  Gerard Salton,et al.  A vector space model for automatic indexing , 1975, CACM.

[32]  C. J. van Rijsbergen,et al.  The use of hierarchic clustering in information retrieval , 1971, Inf. Storage Retr..

[33]  ChengXiang Zhai,et al.  Probabilistic Relevance Models Based on Document and Query Generation , 2003 .

[34]  Christos H. Papadimitriou,et al.  Worst-case equilibria , 1999 .

[35]  Tie-Yan Liu Learning to Rank for Information Retrieval , 2009, Found. Trends Inf. Retr..

[36]  Jun Wang,et al.  Dynamic Information Retrieval Modeling , 2015, Synthesis Lectures on Information Concepts, Retrieval, and Services.

[37]  Krishna P. Gummadi,et al.  Equity of Attention: Amortizing Individual Fairness in Rankings , 2018, SIGIR.

[38]  Jonathon Shlens,et al.  Explaining and Harnessing Adversarial Examples , 2014, ICLR.