Series of Coordination Polymers Based on Different Carboxylates and a Tri(4-imidazolylphenyl)amine Ligand: Entangled Structures and Photoluminescence

Seven new coordination polymers, namely, [Cd(Tipa)(L1)2]·H2O (1), [Cd(Tipa)(L2)]·H2O (2), [Cd(Tipa)(L2)]·CH3OH·H2O (3), Cd(Tipa)(L3)(H2O) (4), [Mn(Tipa)(L2)]·H2O (5), [Ni2(Tipa)2(L4)(H2O)2]2·Cl4·4H2O (6), and [Ni2(Tipa)2(L5)(H2O)4]·(H4L5)·0.5H2O (7), where HL1 = benzoic acid, H2L2 = 5-NH2-1,3-benzenedicarboxylic acid, H2L3 = 2-(4-carboxybenzylamino)benzoic acid, H2L4 = 1,4-benzenedicarboxylic acid, H4L5 = 1,2,4,5-benzenetetracarboxylic acid, and Tipa = tri(4-imidazolylphenyl)amine, have been synthesized by varying the carboxylate anions and metal centers under hydrothermal conditions. Compound 1 shows a one-dimensional (1D) chain. Compounds 2 and 5 are isostructural and display (3,5)-connected (42·6)(42·67·8) topology. In the two compounds, the identical 2D networks entangle in highly rare parallel fashions to give fascinating 2D → 3D frameworks with polycatenation and polyrotaxane characters. Compound 3 displays a 2-fold interpenetrating 3D framework with (3,5)-connected (63)(65·85) topology. The structu...

[1]  Hua Wu,et al.  An unprecedented 2D → 3D metal-organic polyrotaxane framework constructed from cadmium and a flexible star-like ligand. , 2011, Chemical communications.

[2]  Z. Xue,et al.  Syntheses, Structures, and Photochemical Properties of Six New Metal−Organic Frameworks Based on Aromatic Dicarboxylate Acids and V-Shaped Imidazole Ligands , 2010 .

[3]  Yi Zuo,et al.  Varying Ligand Backbones for Modulating the Interpenetration of Coordination Polymers Based on Homoleptic Cobalt(II) Nodes , 2009 .

[4]  S. Du,et al.  Five d10 3D Metal−Organic Frameworks Constructed From Aromatic Polycarboxylate Acids and Flexible Imidazole-Based Ligands , 2008 .

[5]  Songping D. Huang,et al.  Huge deuterated effect on permittivity in a metal-organic framework. , 2008, Chemistry.

[6]  Yan Xu,et al.  Two Distinct Supramolecular Motifs from Bis(2-methylimidazo-1-yl) Methane: An Infinite [n]Catenane and A Discrete M6 Metal-Organic Framework , 2008 .

[7]  Kohzo Ito,et al.  Recent advances in the preparation of cyclodextrin-based polyrotaxanes and their applications to soft materials. , 2007, Soft matter.

[8]  Yaoyu Wang,et al.  An unusual 3D three-fold parallel interpenetrating network self-assembled from the grid-containing 2D layer motifs , 2007 .

[9]  Wei‐Xiong Zhang,et al.  A "Star" antiferromagnet: a polymeric iron(III) acetate that exhibits both spin frustration and long-range magnetic ordering. , 2007, Angewandte Chemie.

[10]  Yang-guang Li,et al.  Exceptional self-penetrating networks containing unprecedented quintuple-stranded molecular braid, 9-fold meso helices, and 17-fold interwoven helices. , 2007, Inorganic chemistry.

[11]  Chuan‐Ming Jin,et al.  A new infinite inorganic [n]catenane from silver and bis(2-methylimidazolyl)methane ligand. , 2006, Chemical communications.

[12]  Dong‐sheng Li,et al.  An investigation of the self-assembly of neutral, interlaced, triple-stranded molecular braids. , 2006, Chemistry.

[13]  J. Long,et al.  Microporous metal-organic frameworks incorporating 1,4-benzeneditetrazolate: syntheses, structures, and hydrogen storage properties. , 2006, Journal of the American Chemical Society.

[14]  S. Qiu,et al.  Design, synthesis and fluorescence of two-dimensional pillared layers by connecting infinite one-dimensional chains via 4,4′-bipyridine , 2006 .

[15]  Wei‐Yin Sun,et al.  Metal-organic architectures of silver(I), cadmium(II), and copper(II) with a flexible tricarboxylate ligand. , 2006, Inorganic chemistry.

[16]  Song Gao,et al.  Two three-dimensional metal-organic frameworks containing one-dimensional hydroxyl/carboxylate mixed bridged metal chains: syntheses, crystal structures, and magnetic properties. , 2006, Inorganic chemistry.

[17]  P. Gütlich,et al.  (Pr4N)4[Ag3Fe2(ECN)12]--anionic network structures with mutual interpenetration. , 2005, Angewandte Chemie.

[18]  B. Hanson,et al.  Novel zinc phosphate topologies defined by organic ligands. , 2005, Inorganic chemistry.

[19]  Omar M Yaghi,et al.  Strategies for hydrogen storage in metal--organic frameworks. , 2005, Angewandte Chemie.

[20]  X. Bu,et al.  Multidimensional Metal−Organic Frameworks Constructed from Flexible Bis(imidazole) Ligands , 2005 .

[21]  Rui Zhou,et al.  Twelve-connected net with face-centered cubic topology: a coordination polymer based on [Cu12(mu4-SCH3)6]6+ clusters and CN- linkers. , 2005, Angewandte Chemie.

[22]  Y. Wen,et al.  Synthesis, structure, and fluorescence of two cadmium(II)-citrate coordination polymers with different coordination architectures , 2005 .

[23]  S. Qiu,et al.  A chiral layered Co(II) coordination polymer with helical chains from achiral materials. , 2005, Chemical communications.

[24]  P. Steel Ligand design in multimetallic architectures: six lessons learned. , 2005, Accounts of chemical research.

[25]  Mir Wais Hosseini,et al.  Molecular tectonics: from simple tectons to complex molecular networks. , 2005, Accounts of chemical research.

[26]  Guanghua Li,et al.  From a 1-D Chain, 2-D Layered Network to a 3-D Supramolecular Framework Constructed from a Metal−Organic Coordination Compound , 2005 .

[27]  Jihong Yu,et al.  Zn2[(S)-O3PCH2NHC4H7CO2]2: a homochiral 3D zinc phosphonate with helical channels. , 2004, Angewandte Chemie.

[28]  A. Fletcher,et al.  Hysteretic Adsorption and Desorption of Hydrogen by Nanoporous Metal-Organic Frameworks , 2004, Science.

[29]  Lee Brammer,et al.  Developments in inorganic crystal engineering. , 2004, Chemical Society reviews.

[30]  Chunhua Yan,et al.  Two square grid coordination polymers with manganese(II) and 1,4-bis(imidazole-1-ylmethyl)benzene , 2004 .

[31]  Xiao-Ming Chen,et al.  Recent Advances in Luminescent Monomeric, Multinuclear, and Polymeric Zn(II) and Cd(II) Coordination Complexes , 2004 .

[32]  X. Bu,et al.  Novel eclipsed 2D cadmium(II) coordination polymers with open-channel structure constructed from terephthalate and 3-(2-pyridyl)pyrazole: crystal structures, emission properties, and inclusion of guest molecules. , 2004, Inorganic chemistry.

[33]  J. Klinowski,et al.  Synthesis and characterization of a novel cadmium-organic framework with trimesic acid and 1,2-bis(4-pyridyl)ethane. , 2004, Inorganic chemistry.

[34]  Ming Xue,et al.  Novel Supramolecular Frameworks Self‐Assembled from One‐Dimensional Polymeric Coordination Chains , 2004 .

[35]  A. Erxleben Structures and properties of Zn(II) coordination polymers , 2003 .

[36]  Davide M. Proserpio,et al.  POLYCATENATION, POLYTHREADING AND POLYKNOTTING IN COORDINATION NETWORK CHEMISTRY , 2003 .

[37]  J. Real,et al.  Synergy between spin crossover and metallophilicity in triple interpenetrated 3D nets with the NbO structure type. , 2003, Journal of the American Chemical Society.

[38]  Stuart L James,et al.  Metal-organic frameworks. , 2003, Chemical Society reviews.

[39]  Xiao‐Ming Chen,et al.  Helical Ribbons of Cadmium(II) and Zinc(II) Dicarboxylates with Bipyridyl- Like Chelates Syntheses, Crystal Structures and Photoluminescence , 2003 .

[40]  Yue-Peng Cai,et al.  Ligand-directed molecular architectures: self-assembly of two-dimensional rectangular metallacycles and three-dimensional trigonal or tetragonal prisms. , 2003, Journal of the American Chemical Society.

[41]  Michael O'Keeffe,et al.  Reticular synthesis and the design of new materials , 2003, Nature.

[42]  Wenbin Lin,et al.  Interlocked chiral nanotubes assembled from quintuple helices. , 2003, Journal of the American Chemical Society.

[43]  R. Cao,et al.  A new type of three-dimensional framework constructed from dodecanuclear cadmium(II) macrocycles. , 2003, Chemical communications.

[44]  Xiao‐Ming Chen,et al.  Supramolecular Organisation of Polymeric Coordination Chains into a Three-Dimensional Network with Nanosized Channels that Clathrate Large Organic Molecules , 2003 .

[45]  S. R. Seidel,et al.  High-symmetry coordination cages via self-assembly. , 2002, Accounts of chemical research.

[46]  A. Bond,et al.  Layered metal organosulfides: hydrothermal synthesis, structure and magnetic behaviour of the spin-canted magnet Co(1,2-(O2C)(S)C6H4). , 2002, Chemical communications.

[47]  G. Bazan,et al.  Coherent effects in energy transport in model dendritic structures investigated by ultrafast fluorescence anisotropy spectroscopy. , 2002, Journal of the American Chemical Society.

[48]  J. Marrot,et al.  A breathing hybrid organic-inorganic solid with very large pores and high magnetic characteristics. , 2002, Angewandte Chemie.

[49]  Ren-Gen Xiong,et al.  Enantioseparation of racemic organic molecules by a zeolite Analogue , 2001 .

[50]  Suning Wang,et al.  A Blue Luminescent Star-Shaped ZnII Complex that Can Detect Benzene. , 2001, Angewandte Chemie.

[51]  M. Bhadbhade,et al.  Synthesis and single crystal investigation of two-dimensional rectangular network [M(4,4'-bpy)(Phth)(H(2)O)]n.2H(2)O with small neutral cavities. , 2001, Inorganic chemistry.

[52]  Chad A. Mirkin,et al.  Strategies for the Construction of Supramolecular Compounds through Coordination Chemistry. , 2001, Angewandte Chemie.

[53]  M. Zaworotko,et al.  From molecules to crystal engineering: supramolecular isomerism and polymorphism in network solids. , 2001, Chemical reviews.

[54]  Joel S. Miller,et al.  Interpenetrating Lattices—Materials of the Future , 2001 .

[55]  H Li,et al.  Modular chemistry: secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks. , 2001, Accounts of chemical research.

[56]  Stuart R. Batten,et al.  Topology of interpenetration , 2001 .

[57]  I. Dance,et al.  Contrasting crystal supramolecularity for [Fe(phen)3]I8 and [Mn(phen)3]I8: complementary orthogonality and complementary helicity , 2001 .

[58]  A. Chan,et al.  Assembly of a 3D nanoporous framework [Cu6(OH)4(tib)8]n8+ from Cu(II) and the flexible tripodal ligand tib , 2001 .

[59]  Michael O'Keeffe,et al.  Cu2(ATC)·6H2O: Design of open metal sites in porous metal-organic crystals (ATC: 1,3,5,7-Adamantane Tetracarboxylate) [27] , 2000 .

[60]  Ian D. Williams,et al.  Solvothermal Synthesis of a Stable Coordination Polymer with Copper-I−Copper-II Dimer Units: [Cu4{1,4-C6H4(COO)2}3(4,4‘-bipy)2]n , 2000 .

[61]  Jinho Oh,et al.  A homochiral metal–organic porous material for enantioselective separation and catalysis , 2000, Nature.

[62]  P. Stang,et al.  Self-assembly of discrete cyclic nanostructures mediated by transition metals. , 2000, Chemical reviews.

[63]  Kentaro Yamaguchi,et al.  Rotaxane-based molecular switch with fluorescence signaling , 2000 .

[64]  Stuart R. Batten,et al.  Copper(I) dicyanamide coordination polymers: ladders, sheets, layers, diamond-like networks and unusual interpenetration , 2000 .

[65]  S. Rizzato,et al.  Chiral packing of chiral quintuple layers polycatenated to give a three-dimensional network in the coordination polymer [Co5(bpe)9(H2O)8(SO4)4](SO4)·14H2O [bpe = 1,2-bis(4-pyridyl)ethane] , 2000 .

[66]  J. Zubieta,et al.  Organic-Inorganic Hybrid Materials: From "Simple" Coordination Polymers to Organodiamine-Templated Molybdenum Oxides. , 1999, Angewandte Chemie.

[67]  Chen,et al.  Self-Assembled Three-Dimensional Coordination Polymers with Unusual Ligand-Unsupported Ag-Ag Bonds: Syntheses, Structures, and Luminescent Properties. , 1999, Angewandte Chemie.

[68]  Kenneth N. Raymond,et al.  Supermolecules by Design , 1999 .

[69]  A. von Zelewsky,et al.  Predetermined Chirality at Metal Centers. , 1999, Angewandte Chemie.

[70]  Davide M. Proserpio,et al.  Complex Interwoven Polymeric Frames from the Self-Assembly of Silver(I) Cations and Sebaconitrile , 1999 .

[71]  J. Steinke,et al.  Catalytically self-threading polyrotaxanes , 1999 .

[72]  Wenbin Lin,et al.  Supramolecular Engineering of Chiral and Acentric 2D Networks. Synthesis, Structures, and Second-Order Nonlinear Optical Properties of Bis(nicotinato)zinc and Bis{3-[2-(4-pyridyl)ethenyl]benzoato}cadmium , 1998 .

[73]  Stuart R Batten,et al.  Interpenetrating Nets: Ordered, Periodic Entanglement. , 1998, Angewandte Chemie.

[74]  Jean-Pierre Sauvage,et al.  Transition Metal-Containing Rotaxanes and Catenanes in Motion: Toward Molecular Machines and Motors , 1998 .

[75]  R. Robson,et al.  An Infinite 2D Polyrotaxane Network in Ag2(bix)3(NO3)2 (bix = 1,4-Bis(imidazol-1-ylmethyl)benzene) , 1997 .

[76]  R. Robson,et al.  A Hexaimidazole Ligand Binding Six Octahedral Metal Ions To Give an Infinite 3D α‐Po‐Like Network Through Which Two Independent 2D Hydrogen‐Bonded Networks Interweave , 1997 .

[77]  Hailian Li,et al.  T-SHAPED MOLECULAR BUILDING UNITS IN THE POROUS STRUCTURE OF AG(4,4'-BPY).NO3 , 1996 .

[78]  O. Yaghi,et al.  Hydrothermal Synthesis of a Metal-Organic Framework Containing Large Rectangular Channels , 1995 .

[79]  Davide M. Proserpio,et al.  1-, 2-, and 3-Dimensional Polymeric Frames in the Coordination Chemistry of AgBF4 with Pyrazine. The First Example of Three Interpenetrating 3-Dimensional Triconnected Nets , 1995 .

[80]  Michael J. Zaworotko,et al.  Triple interpenetration in [Ag(4,4′-bipyridine)][NO3], a cationic polymer with a three-dimensional motif generated by self-assembly of ‘T-shaped’ building blocks , 1995 .

[81]  Roald Hoffmann,et al.  POSSIBLE HARD MATERIALS BASED ON INTERPENETRATING DIAMOND-LIKE NETWORKS , 1994 .

[82]  E. Prouzet,et al.  The Interlocked Structure of a New Thiophosphate of Transition Metal CrP3S9+x (x ≈ 0.25) , 1993 .