Using simulated annealing to design good codes

Simulated annealing is a computational heuristic for obtaining approximate solutions to combinatorial optimization problems. It is used to construct good source codes, error-correcting codes, and spherical codes. For certain sets of parameters codes that are better than any other known in the literature are found.

[1]  Catherine A. Schevon,et al.  Optimization by simulated annealing: An experimental evaluation , 1984 .

[2]  C. Shannon Probability of error for optimal codes in a Gaussian channel , 1959 .

[3]  H. Coxeter The problem of packing a number of equal nonoverlapping circles on a sphere , 1962 .

[4]  Shu Lin,et al.  Error control coding : fundamentals and applications , 1983 .

[5]  O. Antoine,et al.  Theory of Error-correcting Codes , 2022 .

[6]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[7]  Kenneth J. Supowit,et al.  Simulated Annealing Without Rejected Moves , 1986, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[8]  A. Wyner Capabilities of bounded discrepancy decoding , 1965 .

[9]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[10]  N. J. A. Sloane,et al.  Tables of sphere packings and spherical codes , 1981, IEEE Trans. Inf. Theory.

[11]  N. J. A. Sloane,et al.  Lower bounds for constant weight codes , 1980, IEEE Trans. Inf. Theory.

[12]  T. Tarnai,et al.  Improved packing of equal circles on a sphere and rigidity of its graph , 1983, Mathematical Proceedings of the Cambridge Philosophical Society.

[13]  Ian F. Blake The Leech Lattice as a Code for the Gaussian Channel , 1971, Inf. Control..

[14]  M. Darnell,et al.  Error Control Coding: Fundamentals and Applications , 1985 .

[15]  D. A. Bell,et al.  Information Theory and Reliable Communication , 1969 .

[16]  Mihalis Yannakakis,et al.  How easy is local search? , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[17]  S. P. Lloyd,et al.  Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.

[18]  Allen Gersho,et al.  Asymptotically optimal block quantization , 1979, IEEE Trans. Inf. Theory.

[19]  Scott Kirkpatrick,et al.  Global Wiring by Simulated Annealing , 1983, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[20]  N. J. A. Sloane,et al.  Lexicographic codes: Error-correcting codes from game theory , 1986, IEEE Trans. Inf. Theory.

[21]  M. Lundy Applications of the annealing algorithm to combinatorial problems in statistics , 1985 .

[22]  R. Rankin The Closest Packing of Spherical Caps in n Dimensions , 1955, Proceedings of the Glasgow Mathematical Association.

[23]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[24]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[25]  Shepp La Computerized tomography and nuclear magnetic resonance. , 1980 .