Self-assembled TiO2-graphene hybrid nanostructures for enhanced Li-ion insertion.

We used anionic sulfate surfactants to assist the stabilization of graphene in aqueous solutions and facilitate the self-assembly of in situ grown nanocrystalline TiO2, rutile and anatase, with graphene. These nanostructured TiO2-graphene hybrid materials were used for investigation of Li-ion insertion properties. The hybrid materials showed significantly enhanced Li-ion insertion/extraction in TiO2. The specific capacity was more than doubled at high charge rates, as compared with the pure TiO2 phase. The improved capacity at high charge-discharge rate may be attributed to increased electrode conductivity in the presence of a percolated graphene network embedded into the metal oxide electrodes.

[1]  Jun Liu,et al.  Low-Temperature Synthesis of Tunable Mesoporous Crystalline Transition Metal Oxides and Applications as Au Catalyst Supports , 2008 .

[2]  E. Yoo,et al.  Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. , 2008, Nano letters.

[3]  M. Rajamathi,et al.  Graphite oxide-intercalated anionic clay and its decomposition to graphene-inorganic material nanocomposites. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[4]  P. Kamat,et al.  TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. , 2008, ACS nano.

[5]  L. Brinson,et al.  Functionalized graphene sheets for polymer nanocomposites. , 2008, Nature nanotechnology.

[6]  P. Umek,et al.  RuO2-wired high-rate nanoparticulate TiO2 (anatase): Suppression of particle growth using silica , 2008 .

[7]  E. Samulski,et al.  Synthesis of water soluble graphene. , 2008, Nano letters.

[8]  Xinran Wang,et al.  Atomic layer deposition of metal oxides on pristine and functionalized graphene. , 2008, Journal of the American Chemical Society.

[9]  Jun Liu,et al.  Synthesis and Li-Ion Insertion Properties of Highly Crystalline Mesoporous Rutile TiO2 , 2008 .

[10]  G. Wallace,et al.  Processable aqueous dispersions of graphene nanosheets. , 2008, Nature nanotechnology.

[11]  Klaus Kern,et al.  Electronic transport properties of individual chemically reduced graphene oxide sheets. , 2007, Nano letters.

[12]  Yu-Guo Guo,et al.  Superior Electrode Performance of Nanostructured Mesoporous TiO2 (Anatase) through Efficient Hierarchical Mixed Conducting Networks , 2007 .

[13]  Robert Dominko,et al.  Improved Electrode Performance of Porous LiFePO4 Using RuO2 as an Oxidic Nanoscale Interconnect , 2007 .

[14]  S. Stankovich,et al.  Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide , 2007 .

[15]  R. Car,et al.  Single Sheet Functionalized Graphene by Oxidation and Thermal Expansion of Graphite , 2007 .

[16]  Haoshen Zhou,et al.  Nanocrystalline Rutile TiO2 Electrode for High-Capacity and High-Rate Lithium Storage , 2007 .

[17]  J. Tarascon,et al.  Structural evolution during the reaction of Li with nano-sized rutile type TiO2 at room temperature , 2007 .

[18]  Jun Liu,et al.  Surface-mediated growth of transparent, oriented, and well-defined nanocrystalline anatase titania films. , 2006, Journal of the American Chemical Society.

[19]  P. Bruce,et al.  TiO2(B) Nanowires as an Improved Anode Material for Lithium‐Ion Batteries Containing LiFePO4 or LiNi0.5Mn1.5O4 Cathodes and a Polymer Electrolyte , 2006 .

[20]  R. Dominko,et al.  Citrate-Derived Carbon Nanocoatings for Poorly Conducting Cathode A Detailed Study Using TiO 2 Substrate Materials , 2006 .

[21]  D. Saville,et al.  Self-healing of surfactant surface micelles on millisecond time scales. , 2006, Journal of the American Chemical Society.

[22]  U. V. Varadaraju,et al.  Room temperature synthesis and Li insertion into nanocrystalline rutile TiO2 , 2006 .

[23]  S. Stankovich,et al.  Graphene-based composite materials , 2006, Nature.

[24]  J. Maier,et al.  High Lithium Electroactivity of Nanometer‐Sized Rutile TiO2 , 2006 .

[25]  C. Berger,et al.  Electronic Confinement and Coherence in Patterned Epitaxial Graphene , 2006, Science.

[26]  Roberto Car,et al.  Functionalized single graphene sheets derived from splitting graphite oxide. , 2006, The journal of physical chemistry. B.

[27]  N. Nakashima,et al.  A Mesoporous Nanocomposite of TiO2 and Carbon Nanotubes as a High‐Rate Li‐Intercalation Electrode Material , 2006 .

[28]  J. Maier,et al.  Nanoionics: ion transport and electrochemical storage in confined systems , 2005, Nature materials.

[29]  P. Bruce,et al.  Nanostructured materials for advanced energy conversion and storage devices , 2005, Nature materials.

[30]  S. Pejovnik,et al.  Impact of the Carbon Coating Thickness on the Electrochemical Performance of LiFePO4 / C Composites , 2005 .

[31]  L. Kavan,et al.  Pseudocapacitive Lithium Storage in TiO2(B) , 2005 .

[32]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[33]  L. Nazar,et al.  Nano-network electronic conduction in iron and nickel olivine phosphates , 2004, Nature materials.

[34]  Yingke Zhou,et al.  Lithium Insertion into TiO2 Nanotube Prepared by the Hydrothermal Process , 2003 .

[35]  T. Ebbesen,et al.  Supramolecular Self-Assembly of Lipid Derivatives on Carbon Nanotubes , 2003, Science.

[36]  Bruce Dunn,et al.  Hierarchical battery electrodes based on inverted opal structures , 2002 .

[37]  J. Dahn,et al.  Reducing Carbon in LiFePO4 / C Composite Electrodes to Maximize Specific Energy, Volumetric Energy, and Tap Density , 2002 .

[38]  H. Imai,et al.  Crystal phase control for titanium dioxide films by direct deposition in aqueous solutions , 2002 .

[39]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[40]  P. Prosini,et al.  Improved electrochemical performance of a LiFePO4-based composite cathode , 2001 .

[41]  A. Rousset,et al.  Specific surface area of carbon nanotubes and bundles of carbon nanotubes , 2001 .

[42]  L. Nazar,et al.  Poly(pyrrole) and poly(thiophene)/vanadium oxide interleaved nanocomposites: positive electrodes for lithium batteries , 1998 .

[43]  L. Nazar,et al.  Electrochemical Lithium Intercalation into a Polyaniline/ V 2 O 5 Nanocomposite , 1996 .

[44]  S. M. Gruner,et al.  Biomimetic Pathways for Assembling Inorganic Thin Films , 1996, Science.

[45]  L. Kavan,et al.  Nanocrystalline TiO2 (Anatase) Electrodes: Surface Morphology, Adsorption, and Electrochemical Properties , 1996 .

[46]  J. S. Beck,et al.  Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism , 1992, Nature.

[47]  E. Yoo,et al.  Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure. , 2009, Nano letters.

[48]  P. Bruce,et al.  TiO(2)-B nanowires. , 2004, Angewandte Chemie.

[49]  Bruce Dunn,et al.  Vanadium Oxide-Carbon Nanotube Composite Electrodes for Use in Secondary Lithium Batteries , 2002 .

[50]  Claus Duschl,et al.  Purification and size‐selection of carbon nanotubes , 1997 .