Large‐Sample Properties of Minimum Discriminant Information Adjustment Estimates Under Complex Sampling Designs

[1]  S. Haberman Pseudo-Equivalent Groups and Linking , 2015 .

[2]  Shelby J. Haberman,et al.  Repeater Analysis for Combining Information from Different Assessments. , 2015 .

[3]  Lili Yao,et al.  Prediction of true test scores from observed item scores and ancillary data. , 2015, The British journal of mathematical and statistical psychology.

[4]  J. R. Lockwood,et al.  Linking Reading Coaches and Student Achievement , 2010 .

[5]  B. Graham,et al.  Inverse Probability Tilting for Moment Condition Models with Missing Data , 2008 .

[6]  Carl-Erik Särndal,et al.  Generalized Raking Procedures in Survey Sampling , 1993 .

[7]  Jiahua Chen,et al.  Empirical likelihood estimation for ?nite populations and the e?ective usage of auxiliary informatio , 1993 .

[8]  C. Särndal,et al.  Calibration Estimators in Survey Sampling , 1992 .

[9]  Shelby J. Haberman,et al.  Adjustment by Minimum Discriminant Information , 1984 .

[10]  R. Gill,et al.  Cox's regression model for counting processes: a large sample study : (preprint) , 1982 .

[11]  I. Csiszár $I$-Divergence Geometry of Probability Distributions and Minimization Problems , 1975 .

[12]  J. Darroch,et al.  Generalized Iterative Scaling for Log-Linear Models , 1972 .

[13]  Robert H. Berk,et al.  Consistency and Asymptotic Normality of MLE's for Exponential Models , 1972 .

[14]  S. Kullback,et al.  Marginal Homogeneity of Multidimensional Contingency Tables , 1971 .

[15]  S. Kullback,et al.  Symmetry and Marginal Homogeneity of an r×r Contingency Table , 1969 .

[16]  H. O. Hartley,et al.  A new estimation theory for sample surveys , 1968 .

[17]  S. Kullback,et al.  Contingency tables with given marginals. , 1968, Biometrika.

[18]  J. Hájek Asymptotic Theory of Rejective Sampling with Varying Probabilities from a Finite Population , 1964 .

[19]  R. A. Leibler,et al.  On Information and Sufficiency , 1951 .

[20]  W. Deming,et al.  On a Least Squares Adjustment of a Sampled Frequency Table When the Expected Marginal Totals are Known , 1940 .

[21]  Jens Hainmueller,et al.  Entropy Balancing for Causal Effects: A Multivariate Reweighting Method to Produce Balanced Samples in Observational Studies , 2012, Political Analysis.

[22]  Jae Kwang Kim Calibration estimation using exponential tilting in sample surveys , 2010 .