Geometry-of-numbers methods over global fields I: Prehomogeneous vector spaces

We develop geometry-of-numbers methods to count orbits in prehomogeneous vector spaces having bounded invariants over any global field. As our primary example, we apply these techniques to determine, for any base global field $F$ of characteristic not 2, the density of discriminants of field extensions of degree at most 5 over $F$.

[1]  B. Datskovsky,et al.  Density of discriminants of cubic extensions. , 1988 .

[2]  M. Bhargava Most hyperelliptic curves over Q have no rational points , 2013, 1308.0395.

[3]  Manjul Bhargava Higher composition laws II: On cubic analogues of Gauss composition , 2004 .

[4]  M. Bhargava,et al.  The average size of the 5-Selmer group of elliptic curves is 6, and the average rank is less than 1 , 2013, 1312.7859.

[5]  Manjul Bhargava,et al.  The density of discriminants of quartic rings and fields , 2005, 1005.5578.

[6]  J. Serre Une ≪formule de masse≫ pour les extensions totalement ramifiées de degré donné d’un corps local , 2003 .

[7]  A. Borel,et al.  Finiteness theorems for discrete subgroups of bounded covolume in semi-simple groups , 1989 .

[8]  Jacob Tsimerman,et al.  On the Davenport–Heilbronn theorems and second order terms , 2010, 1005.0672.

[9]  Manjul Bhargava,et al.  Higher composition laws III: The parametrization of quartic rings , 2004 .

[10]  J. Thorne $E_{6}$ AND THE ARITHMETIC OF A FAMILY OF NON-HYPERELLIPTIC CURVES OF GENUS 3 , 2015, Forum of Mathematics, Pi.

[11]  M. Bhargava,et al.  A positive proportion of elliptic curves over Q have rank one , 2014, 1401.0233.

[12]  The average size of the 2-Selmer group of Jacobians of hyperelliptic curves having a rational Weierstrass point , 2012, 1208.1007.

[13]  A. Kable,et al.  Uniform distribution of the Steinitz invariants of quadratic and cubic extensions , 2006, Compositio Mathematica.

[14]  B. Conrad Finiteness theorems for algebraic groups over function fields , 2011, Compositio Mathematica.

[15]  Manjul Bhargava Higher composition laws IV: The parametrization of quintic rings , 2008 .

[16]  J. Oesterlé Nombres de Tamagawa et groupes unipotents en caractéristique p , 1984 .

[17]  H. Davenport,et al.  On the density of discriminants of cubic fields. II , 1971, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[18]  The average number of elements in the 4-Selmer groups of elliptic curves is 7 , 2013, 1312.7333.

[19]  John Milnor,et al.  Introduction to algebraic K-theory , 1971 .

[20]  Mikio Sato,et al.  A classification of irreducible prehomogeneous vector spaces and their relative invariants , 1977, Nagoya Mathematical Journal.

[21]  The mean number of 3‐torsion elements in the class groups and ideal groups of quadratic orders , 2014, 1401.5875.

[22]  André Weil,et al.  Adeles and algebraic groups , 1982 .

[23]  Manjul Bhargava,et al.  Ternary cubic forms having bounded invariants, and the existence of a positive proportion of elliptic curves having rank 0 , 2010, 1007.0052.

[24]  D. Faddeev,et al.  The theory of irrationalities of the third degree , 2009 .

[25]  M. Bhargava,et al.  Binary quartic forms having bounded invariants, and the boundedness of the average rank of elliptic curves , 2010, 1006.1002.

[26]  A. Deitmar On the Riemann Hypothesis for function fields , 2006 .

[27]  David J. Wright,et al.  Prehomogeneous vector spaces and field extensions , 1992 .

[28]  A majority of elliptic curves over $\mathbb Q$ satisfy the Birch and Swinnerton-Dyer conjecture , 2014, 1407.1826.

[29]  M. Bhargava,et al.  On the mean number of $2$-torsion elements in the class groups, narrow class groups, and ideal groups of cubic orders and fields , 2014, 1402.5738.

[30]  B. Poonen,et al.  Most odd degree hyperelliptic curves have only one rational point , 2013, 1302.0061.

[31]  Parametrizing quartic algebras over an arbitrary base , 2010, 1007.5503.

[32]  A. Borel Some finiteness properties of adele groups over number fields , 1963 .

[33]  M. Wood Moduli Spaces for Rings and Ideals , 2009 .

[34]  Jacob Tsimerman,et al.  COUNTING $S_5$ -FIELDS WITH A POWER SAVING ERROR TERM , 2013, Forum of Mathematics, Sigma.

[35]  Harold Davenport,et al.  On a Principle of Lipschitz , 1951 .

[36]  Z. Klagsbrun Davenport-Heilbronn Theorems for Quotients of Class Groups , 2017, 1701.02834.

[37]  Manjul Bhargava,et al.  Higher composition laws , 2001 .

[38]  H. Davenport,et al.  On the Density of Discriminants of Cubic Fields , 1969 .

[39]  M. Bhargava Mass Formulae for Extensions of Local Fields, and Conjectures on the Density of Number Field Discriminants , 2007 .