The dependence of Type Ia Supernovae luminosities on their host galaxies

Precision cosmology with Type la supernovae (SNe Ia) makes use of the fact that SN Ia luminosities depend on their light-curve shapes and colours. Using Supernova Legacy Survey (SNLS) and other data, we show that there is an additional dependence on the global characteristics of their host galaxies: events of the same light-curve shape and colour are, on average, 0.08 mag (similar or equal to 4.0 sigma) brighter in massive host galaxies (presumably metal-rich) and galaxies with low specific star formation rates (sSFR). These trends do not depend on any assumed cosmological model, and are independent of the SN light-curve width: both fast and slow-declining events show the same trends. SNe Ia in galaxies with a low sSFR also have a smaller slope ('beta') between their luminosities and colours with similar to 2.7 sigma significance, and a smaller scatter on SN la Hubble diagrams (at 95 per cent confidence), though the significance of these effects is dependent on the reddest SNe. SN Ia colours are similar between low-mass and high-mass hosts, leading us to interpret their luminosity differences as an intrinsic property of the SNe and not of some external factor such as dust. If the host stellar mass is interpreted as a metallicity indicator using galaxy mass-metallicity relations, the luminosity trends are in qualitative agreement with theoretical predictions. We show that the average stellar mass, and therefore the average metallicity, of our SN Ia host galaxies decreases with redshift. The SN la luminosity differences consequently introduce a systematic error in cosmological analyses, comparable to the current statistical uncertainties on parameters such as in, the equation of state of dark energy. We show that the use of two SN Ia absolute magnitudes, one for events in high-mass (metal-rich) galaxies and the other for events in low-mass (metal-poor) galaxies, adequately corrects for the differences. Cosmological fits incorporating these terms give a significant reduction in chi(2) (3.8 sigma-4.5 sigma); linear corrections based on host parameters do not perform as well. We conclude that all future SN la cosmological analyses should use a correction of this (or similar) form to control demographic shifts in the underlying galaxy population.

[1]  J. Brinchmann,et al.  The VIMOS VLT Deep Survey. The assembly history of the stellar mass in galaxies: from the young to t , 2007, 0704.1600.

[2]  J. Wheeler,et al.  Type Ia Supernovae: Influence of the Initial Composition on the Nucleosynthesis, Light Curves, and Spectra and Consequences for the Determination of ΩM and Λ , 1997, astro-ph/9709233.

[3]  Constraints on the Progenitors of Type Ia Supernovae and Implications for the Cosmological Equation of State , 2001, astro-ph/0104257.

[4]  M. Sullivan,et al.  The Core-collapse rate from the Supernova Legacy Survey , 2009, 0904.1066.

[5]  Nicholas B. Suntzeff,et al.  A Hubble diagram of distant type IA supernovae , 1993 .

[6]  Stephan Aune,et al.  MegaCam: the new Canada-France-Hawaii Telescope wide-field imaging camera , 2003, SPIE Astronomical Telescopes + Instrumentation.

[7]  A. Heavens,et al.  Evidence of short-lived SN Ia progenitors , 2007, 0707.1328.

[8]  R. Ellis,et al.  Verifying the Cosmological Utility of Type Ia Supernovae: Implications of a Dispersion in the Ultraviolet Spectra , 2007, 0710.3896.

[9]  A. Moorwood,et al.  Instrument Design and Performance for Optical/Infrared Ground-based Telescopes, , 2003 .

[10]  A. Mazure,et al.  The VIMOS VLT deep survey , 2008, 0903.0271.

[11]  G. Worthey,et al.  Publications of the Astronomical Society of the Pacific The Distribution Of Heavy Elements In Spiral And Elliptical Galaxies , 1999 .

[12]  E. Salpeter The Luminosity function and stellar evolution , 1955 .

[13]  G. de Vaucouleurs,et al.  Corrections and Additions to the Third Reference Catalogue of Bright Galaxies , 1994 .

[14]  M. Sullivan,et al.  SALT2: using distant supernovae to improve the use of type Ia supernovae as distance indicators , 2007, astro-ph/0701828.

[15]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[16]  William Press,et al.  A Precise Distance Indicator: Type Ia Supernova Multicolor Light-Curve Shapes , 1996, astro-ph/9604143.

[17]  E. al.,et al.  BVRI Light Curves for 22 Type Ia Supernovae , 1996, astro-ph/9609064.

[18]  R. Nichol,et al.  Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies , 2005, astro-ph/0501171.

[19]  M. S. Burns,et al.  The Hubble diagram of type Ia supernovae as a function of host galaxy morphology , 2002, astro-ph/0211444.

[20]  Mark Dickinson,et al.  Size Evolution of the Most Massive Galaxies at 1.7 < z < 3 from GOODS NICMOS Survey Imaging , 2008, 0807.4141.

[21]  Constraints on a Universal IMF from UV to Near-IR Galaxy Luminosity Densities , 2003, astro-ph/0304423.

[22]  M. Giavalisco,et al.  The Great Observatories Origins Deep Survey: Initial results from optical and near-infrared imaging , 2003, astro-ph/0309105.

[23]  K. Schawinski How old are SN Ia Progenitor Systems? New Observational Constraints on the Distribution of Time Delays from GALEX , 2009, 0905.0850.

[24]  R. Ellis,et al.  Rates and Properties of Type Ia Supernovae as a Function of Mass and Star Formation in Their Host Galaxies , 2006, astro-ph/0605455.

[25]  Armin Rest,et al.  Photometry of the Type Ia Supernovae 1999cc, 1999cl, and 2000cf , 2005, astro-ph/0511162.

[26]  et al,et al.  UBVRI Light Curves of 44 Type Ia Supernovae , 2005 .

[27]  Arlo U. Landolt,et al.  UBVRI Photometric Standard Stars in the Magnitude Range 11 , 1992 .

[28]  M. Sullivan,et al.  SiFTO: An Empirical Method for Fitting SN Ia Light Curves , 2008, 0803.3441.

[29]  Ernest E. Croner,et al.  The Palomar Transient Factory: System Overview, Performance, and First Results , 2009, 0906.5350.

[30]  Tokyo,et al.  Delay Time Distribution Measurement of Type Ia Supernovae by the Subaru/XMM-Newton Deep Survey and Implications for the Progenitor , 2008 .

[31]  J. Vanderplas,et al.  FIRST-YEAR SLOAN DIGITAL SKY SURVEY-II SUPERNOVA RESULTS: HUBBLE DIAGRAM AND COSMOLOGICAL PARAMETERS , 2009, 0908.4274.

[32]  D. Holz,et al.  Implications of Two Type Ia Supernova Populations for Cosmological Measurements , 2008, 0806.3267.

[33]  M. Sullivan,et al.  Is There Evidence for a Hubble Bubble? The Nature of Type Ia Supernova Colors and Dust in External Galaxies , 2007, 0705.0367.

[34]  M. Phillips,et al.  The reddening-free decline rate versus luminosity relationship for type ia supernovae , 1999, astro-ph/9907052.

[35]  A. Goobar,et al.  The colour-lightcurve shape relation of type Ia supernovae and the reddening law , 2007, 0712.1155.

[36]  N. Yasuda,et al.  Light‐curve studies of nearby Type Ia supernovae with a Multiband Stretch method , 2008, 0807.1244.

[37]  S. E. Woosley,et al.  The diversity of type Ia supernovae from broken symmetries , 2009, Nature.

[38]  J. Wheeler,et al.  Influence of the Stellar Population on Type Ia Supernovae: Consequences for the Determination of Ω , 1999, astro-ph/9908226.

[39]  F. Mannucci,et al.  Two populations of progenitors for type ia supernovae , 2005, astro-ph/0510315.

[40]  Nicholas B. Suntzeff,et al.  THE CARNEGIE SUPERNOVA PROJECT: FIRST PHOTOMETRY DATA RELEASE OF LOW-REDSHIFT TYPE Ia SUPERNOVAE , 2009, 0910.3330.

[41]  L. Kewley,et al.  Metallicity Calibrations and the Mass-Metallicity Relation for Star-forming Galaxies , 2008, 0801.1849.

[42]  N. Vogt,et al.  The Nature of Compact Galaxies in the Hubble Deep Field. II. Spectroscopic Properties and Implications for the Evolution of the Star Formation Rate Density of the Universe , 1997, astro-ph/9704001.

[43]  L. Bildsten,et al.  The Type Ia Supernova Rate , 2005, astro-ph/0507456.

[44]  Stefano Casertano,et al.  Type Ia Supernova Discoveries at z > 1 from the Hubble Space Telescope: Evidence for Past Deceleration and Constraints on Dark Energy Evolution , 2004, astro-ph/0402512.

[45]  F. Mannucci,et al.  The Supernova rate per unit mass , 2004, astro-ph/0411450.

[46]  Armin Rest,et al.  CfA3: 185 TYPE Ia SUPERNOVA LIGHT CURVES FROM THE CfA , 2009, 0901.4787.

[47]  M. Phillips,et al.  The Absolute Magnitudes of Type IA Supernovae , 1993 .

[48]  R. Bacon,et al.  Overview of the Nearby Supernova Factory , 2002, SPIE Astronomical Telescopes + Instrumentation.

[49]  Michael C. Cooper,et al.  THE LARGE-SCALE ENVIRONMENTS OF TYPE Ia SUPERNOVAE: EVIDENCE FOR A METALLICITY BIAS IN THE RATE OR LUMINOSITY OF PROMPT Ia EVENTS , 2009, 0901.4338.

[50]  Valentin Ivanov,et al.  A Search for Environmental Effects on Type IA Supernovae , 2000 .

[51]  Wendy L. Freedman,et al.  THE CARNEGIE SUPERNOVA PROJECT: SECOND PHOTOMETRY DATA RELEASE OF LOW-REDSHIFT TYPE Ia SUPERNOVAE , 2010, 1108.3108.

[52]  Institut d'Astrophysique Spatiale,et al.  Photometric redshifts from evolutionary synthesis with PÉGASE: The code Z-PEG and the z=0 age constraint , 2002 .

[53]  M. Sullivan,et al.  THE MEAN TYPE IA SUPERNOVA SPECTRUM OVER THE PAST NINE GIGAYEARS , 2009, 0901.2476.

[54]  P. Berlind,et al.  Chemistry and Star Formation in the Host Galaxies of Type Ia Supernovae , 2005 .

[55]  Lifan Wang Dust around Type Ia Supernovae , 2005 .

[56]  S. C. Keller,et al.  The SkyMapper Telescope and The Southern Sky Survey , 2007, Publications of the Astronomical Society of Australia.

[57]  Armin Rest,et al.  IMPROVED DARK ENERGY CONSTRAINTS FROM ∼100 NEW CfA SUPERNOVA TYPE Ia LIGHT CURVES , 2009, 0901.4804.

[58]  Mark Sullivan,et al.  Predicted and Observed Evolution in the Mean Properties of Type Ia Supernovae with Redshift , 2007 .

[59]  Philip A. Pinto,et al.  On the Relation between Peak Luminosity and Parent Population of Type Ia Supernovae: A New Tool for Probing the Ages of Distant Galaxies , 2000 .

[60]  I. Hook,et al.  THE EFFECT OF PROGENITOR AGE AND METALLICITY ON LUMINOSITY AND 56Ni YIELD IN TYPE Ia SUPERNOVAE , 2008, 0810.0031.

[61]  M. Sullivan,et al.  The ESO/VLT 3rd year Type Ia supernova data set from the supernova legacy survey , 2009, 0909.3316.

[62]  J. Brinkmann,et al.  The Origin of the Mass-Metallicity Relation: Insights from 53,000 Star-forming Galaxies in the Sloan Digital Sky Survey , 2004, astro-ph/0405537.

[63]  K. Glazebrook,et al.  Constraints on a Universal Stellar Initial Mass Function from Ultraviolet to Near-Infrared Galaxy Luminosity Densities , 2003 .

[64]  Mark Sullivan,et al.  The Progenitors of Type Ia Supernovae , 2008, 0806.3729.

[65]  D. Massa,et al.  An Analysis of the Shapes of Interstellar Extinction Curves. V. The IR-through-UV Curve Morphology , 2007, 0705.0154.

[66]  S. Jha,et al.  Supernovae in Early-Type Galaxies: Directly Connecting Age and Metallicity with Type Ia Luminosity , 2008, 0805.4360.

[67]  IMAGING AND DEMOGRAPHY OF THE HOST GALAXIES OF HIGH-REDSHIFT TYPE Ia SUPERNOVAE , 2003, astro-ph/0310432.

[68]  M. Nonino,et al.  The Great Observatories Origins Deep Survey ? VLT/ISAAC Near-Infrared Imaging of the GOODS-South Field , 2009, 0912.1306.

[69]  S. Jha,et al.  The Luminosity of SN 1999by in NGC 2841 and the Nature of “Peculiar” Type Ia Supernovae , 2001, astro-ph/0105490.

[70]  J. Rhoads,et al.  PROMPT Ia SUPERNOVAE ARE SIGNIFICANTLY DELAYED , 2009, 0909.4293.

[71]  J. Anthony Tyson,et al.  Survey and Other Telescope Technologies and Discoveries , 2002 .

[72]  R. Ellis,et al.  Measurements of $\Omega$ and $\Lambda$ from 42 high redshift supernovae , 1998, astro-ph/9812133.

[73]  E. Commins Observational selection, host galaxy dust, and Type Ia supernovae , 2004 .

[74]  J. Neill,et al.  THE LOCAL HOSTS OF TYPE Ia SUPERNOVAE , 2009, 0911.0690.

[75]  Berkeley,et al.  SNLS Spectroscopy: Testing for Evolution in Type Ia Supernovae , 2007, 0709.0859.

[76]  Adam G. Riess,et al.  Improved Distances to Type Ia Supernovae with Multicolor Light-Curve Shapes: MLCS2k2 , 2006 .

[77]  Iap,et al.  The ages and metallicities of galaxies in the local universe , 2005, astro-ph/0506539.

[78]  F. Timmes,et al.  TO APPEAR IN THE ASTROPHYSICAL JOURNAL LETTERS Preprint typeset using LATEX style emulateapj v. 3/3/03 ON VARIATIONS IN THE PEAK LUMINOSITY OF TYPE IA SUPERNOVAE , 2003 .

[79]  Stefano Casertano,et al.  New Hubble Space Telescope Discoveries of Type Ia Supernovae at z ≥ 1: Narrowing Constraints on the Early Behavior of Dark Energy , 2006, astro-ph/0611572.

[80]  Oxford,et al.  Exploring the Optical Transient Sky with the Palomar Transient Factory , 2009, 0906.5355.

[81]  H.-W. Chen,et al.  ApJ in press Preprint typeset using L ATEX style emulateapj v. 9/08/03 THE GEMINI DEEP DEEP SURVEY. VII. THE REDSHIFT EVOLUTION OF THE MASS-METALLICITY RELATION 1,2 , 2005 .

[82]  J. Neill,et al.  The Peculiar Velocities of Local Type Ia Supernovae and Their Impact on Cosmology , 2007, 0704.1654.

[83]  D. Branch,et al.  Extinction and Radial Distribution of Supernova Properties in Their Parent Galaxies , 1997, astro-ph/9711311.

[84]  Kevin Krisciunas,et al.  THE CARNEGIE SUPERNOVA PROJECT: ANALYSIS OF THE FIRST SAMPLE OF LOW-REDSHIFT TYPE-Ia SUPERNOVAE , 2009, 0910.3317.

[85]  J. Neill,et al.  Gemini Spectroscopy of Supernovae from the Supernova Legacy Survey: Improving High-Redshift Supernova Selection and Classification , 2005, astro-ph/0509195.

[86]  Nicholas B. Suntzeff,et al.  The Hubble diagram of the Calan/Tololo type IA supernovae and the value of HO , 1996 .

[87]  L. Sodré,et al.  Semi‐empirical analysis of Sloan Digital Sky Survey galaxies – I. Spectral synthesis method , 2005 .

[88]  S. Savaglio,et al.  THE GALAXY POPULATION HOSTING GAMMA-RAY BURSTS , 2008, 0803.2718.

[89]  J. Brinchmann,et al.  Physical properties of galaxies and their evolution in the VIMOS VLT Deep Survey - I. The evolution of the mass-metallicity relation up to z ~ 0.9 , 2008, 0811.2053.

[90]  M. Sullivan,et al.  Photometric calibration of the Supernova Legacy Survey fields , 2006, astro-ph/0610397.