APR - Global Scan Matching Using Anchor Point Relationships

Global self-localization, i.e. the ability to generate position estimates without initial hypotheses, decisively improves robustness of mobile robot localiza- tion since it allows recovery from arbitrary position errors. APR is a pattern match- ing algorithm designed for the realtime search of best matching laser scans in a set of given reference scans. The algorithm's output is a number of weighted hypothe- ses which makes APR especially attractive for probabilistic techniques aiming at global localization capabilities. The concept of reference scans makes APR appli- cable in both, topological and metric-map navigation schemes. Experimental re- sults are presented for the matching of 180° laser scans in an office environment.

[1]  R. Hinkel,et al.  ENVIRONMENT PERCEPTION WITH A LASER RADAR IN A FAST MOVING ROBOT , 1988 .

[2]  Illah R. Nourbakhsh,et al.  DERVISH - An Office-Navigating Robot , 1995, AI Mag..

[3]  Ingemar J. Cox,et al.  Blanche-an experiment in guidance and navigation of an autonomous robot vehicle , 1991, IEEE Trans. Robotics Autom..

[4]  G. von Wichert Self-organizing visual perception for mobile robot navigation , 1996 .

[5]  Kai Oliver Arras,et al.  Hybrid, high-precision localisation for the mail distributing mobile robot system MOPS , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[6]  J. Weber SUPPORTING MOBILE ROBOT LOCALIZATION BY VISUAL BAR CODE RECOGNITION , 1999 .

[7]  R. Simmons,et al.  Probabilistic Navigation in Partially Observable Environments , 1995 .

[8]  Wolfram Burgard,et al.  Monte Carlo Localization: Efficient Position Estimation for Mobile Robots , 1999, AAAI/IAAI.

[9]  Gerhard Weiss,et al.  A map based on laserscans without geometric interpretation , 1999 .

[10]  David Kortenkamp,et al.  Topological Mapping for Mobile Robots Using a Combination of Sonar and Vision Sensing , 1994, AAAI.

[11]  J.-S. Gutmann,et al.  AMOS: comparison of scan matching approaches for self-localization in indoor environments , 1996, Proceedings of the First Euromicro Workshop on Advanced Mobile Robots (EUROBOT '96).

[12]  Bernt Schiele,et al.  Position estimation using principal components of range data , 1998, Robotics Auton. Syst..

[13]  R. Hinkel,et al.  ENVIRONMENT PERCEPTION WITH A LASER RADAR IN A FAST MOVING ROBOT , 1989 .

[14]  Gerhard Weiß,et al.  Exploration, Navigation and Self-Localization in an Autonomous Mobile Robot , 1995, AMS.

[15]  Evangelos E. Milios,et al.  Robot Pose Estimation in Unknown Environments by Matching 2D Range Scans , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[16]  Reid G. Simmons,et al.  Probabilistic Robot Navigation in Partially Observable Environments , 1995, IJCAI.