Effect of ions on sulfuric acid‐water binary particle formation: 2. Experimental data and comparison with QC‐normalized classical nucleation theory

We report comprehensive, demonstrably contaminant‐free measurements of binary particle formation rates by sulfuric acid and water for neutral and ion‐induced pathways conducted in the European Organization for Nuclear Research Cosmics Leaving Outdoor Droplets chamber. The recently developed Atmospheric Pressure interface‐time of flight‐mass spectrometer was used to detect contaminants in charged clusters and to identify runs free of any contaminants. Four parameters were varied to cover ambient conditions: sulfuric acid concentration (105 to 109 mol cm−3), relative humidity (11% to 58%), temperature (207 K to 299 K), and total ion concentration (0 to 6800 ions cm−3). Formation rates were directly measured with novel instruments at sizes close to the critical cluster size (mobility size of 1.3 nm to 3.2 nm). We compare our results with predictions from Classical Nucleation Theory normalized by Quantum Chemical calculation (QC‐normalized CNT), which is described in a companion paper. The formation rates predicted by the QC‐normalized CNT were extended from critical cluster sizes to measured sizes using the UHMA2 sectional particle microphysics model. Our results show, for the first time, good agreement between predicted and measured particle formation rates for the binary (neutral and ion‐induced) sulfuric acid‐water system. Formation rates increase with RH, sulfuric acid, and ion concentrations and decrease with temperature at fixed RH and sulfuric acid concentration. Under atmospheric conditions, neutral particle formation dominates at low temperatures, while ion‐induced particle formation dominates at higher temperatures. The good agreement between the theory and our comprehensive data set gives confidence in using the QC‐normalized CNT as a powerful tool to study neutral and ion‐induced binary particle formation in atmospheric modeling.

[1]  D. Brus,et al.  Effect of ions on sulfuric acid‐water binary particle formation: 1. Theory for kinetic‐ and nucleation‐type particle formation and atmospheric implications , 2016 .

[2]  T. Petäjä,et al.  Experimental investigation of ion-ion recombination under atmospheric conditions , 2015 .

[3]  T. Petäjä,et al.  Experimental investigation of ion-ion recombination at atmospheric conditions , 2015 .

[4]  T. Petäjä,et al.  Insight into acid-base nucleation experiments by comparison of the chemical composition of positive, negative, and neutral clusters. , 2014, Environmental science & technology.

[5]  J. Kirkby,et al.  On the derivation of particle nucleation rates from experimental formation rates , 2014 .

[6]  J. Seinfeld,et al.  Neutral molecular cluster formation of sulfuric acid–dimethylamine observed in real time under atmospheric conditions , 2014, Proceedings of the National Academy of Sciences.

[7]  H. Vehkamäki,et al.  Electrical charging changes the composition of sulfuric acid-ammonia/dimethylamine clusters , 2014 .

[8]  D. R. Hanson,et al.  Stabilization of sulfuric acid dimers by ammonia, methylamine, dimethylamine, and trimethylamine , 2014 .

[9]  T. Petäjä,et al.  On the composition of ammonia–sulfuric-acid ion clusters during aerosol particle formation , 2014 .

[10]  T. Petäjä,et al.  Technical Note: Using DEG-CPCs at upper tropospheric temperatures , 2014 .

[11]  J. Seinfeld,et al.  Oxidation Products of Biogenic Emissions Contribute to Nucleation of Atmospheric Particles , 2014, Science.

[12]  H. Kjaergaard,et al.  A large source of low-volatility secondary organic aerosol , 2014, Nature.

[13]  J. Curtius,et al.  submitter : Influence of aerosol lifetime on the interpretation of nucleation experiments with respect to the first nucleation theorem , 2013 .

[14]  T. Petäjä,et al.  Molecular understanding of atmospheric particle formation from sulfuric acid and large oxidized organic molecules , 2013, Proceedings of the National Academy of Sciences.

[15]  J. Seinfeld,et al.  Molecular understanding of sulphuric acid–amine particle nucleation in the atmosphere , 2013, Nature.

[16]  S. Haider,et al.  Characterisation of organic contaminants in the CLOUD chamber at CERN , 2013 .

[17]  T. Petäjä,et al.  Enhancement of atmospheric H 2 SO 4 / H 2 O nucleation: organic oxidation products versus amines , 2013 .

[18]  T. Petäjä,et al.  Performance of diethylene glycol-based particle counters in the sub-3 nm size range , 2013 .

[19]  I. Riipinen,et al.  Direct Observations of Atmospheric Aerosol Nucleation , 2013, Science.

[20]  T. Petäjä,et al.  Remarks on Ion Generation for CPC Detection Efficiency Studies in Sub-3-nm Size Range , 2013 .

[21]  T. Petäjä,et al.  Contribution of sulfuric acid and oxidized organic compounds to particle formation and growth , 2012 .

[22]  U. Baltensperger,et al.  Dimethylamine and ammonia measurements with ion chromatography during the CLOUD4 campaign , 2012 .

[23]  U. Baltensperger,et al.  On-line determination of ammonia at low pptv mixing ratios in the CLOUD chamber , 2012 .

[24]  D. R. Hanson,et al.  Sulfuric acid nucleation: power dependencies, variation with relative humidity, and effect of bases , 2012 .

[25]  Min Hu,et al.  Nucleation and growth of nanoparticles in the atmosphere. , 2012, Chemical reviews.

[26]  J. Curtius,et al.  Calibration of a chemical ionization mass spectrometer for the measurement of gaseous sulfuric acid. , 2012, The journal of physical chemistry. A.

[27]  J. Voigtländer,et al.  Numerical simulations of mixing conditions and aerosol dynamics in the CERN CLOUD chamber , 2012 .

[28]  T. Petäjä,et al.  Atmospheric sulphuric acid and neutral cluster measurements using CI-APi-TOF , 2011 .

[29]  J. Curtius,et al.  Performance of a corona ion source for measurement of sulfuric acid by chemical ionization mass spectrometry [Discussion paper] , 2011 .

[30]  M. McGrath,et al.  From quantum chemical formation free energies to evaporation rates , 2011 .

[31]  Jorge Lima,et al.  Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation , 2011, Nature.

[32]  J. Kirkby,et al.  A fibre-optic UV system for H2SO4 production in aerosol chambers causing minimal thermal effects , 2011 .

[33]  A. N. Kvashnin,et al.  Application of multithreading programming to physical experiment , 2011 .

[34]  T. Petäjä,et al.  Particle Size Magnifier for Nano-CN Detection , 2011 .

[35]  J. Curtius,et al.  Performance of a corona ion source for measurement of sulfuric acid by chemical ionization mass spectrometry , 2010 .

[36]  T. Petäjä,et al.  Homogenous nucleation of sulfuric acid and water at close to atmospherically relevant conditions , 2010 .

[37]  K. Lehtinen,et al.  Sub-10 nm particle growth by vapor condensation – effects of vapor molecule size and particle thermal speed , 2010 .

[38]  Shan‐Hu Lee,et al.  Ternary homogeneous nucleation of H 2 SO 4 , NH 3 , and H 2 O under conditions relevant to the lower troposphere , 2010 .

[39]  T. Petäjä,et al.  Composition and temporal behavior of ambient ions in the boreal forest , 2010 .

[40]  A. Arneth,et al.  EUCAARI ion spectrometer measurements at 12 European sites – analysis of new particle formation events , 2010 .

[41]  U. Rohner,et al.  A high-resolution mass spectrometer to measure atmospheric ion composition , 2010 .

[42]  C. Kuang,et al.  Chemical ionization mass spectrometric measurements of atmospheric neutral clusters using the cluster-CIMS , 2010 .

[43]  T. Petäjä,et al.  The Role of Sulfuric Acid in Atmospheric Nucleation , 2010, Science.

[44]  I. Riipinen,et al.  Evidence for the role of organics in aerosol particle formation under atmospheric conditions , 2010, Proceedings of the National Academy of Sciences.

[45]  G. Mann,et al.  Impact of nucleation on global CCN , 2009 .

[46]  D. Brus,et al.  Homogeneous nucleation of sulfuric acid and water mixture: experimental setup and first results , 2009 .

[47]  Jun Zheng,et al.  Formation of nanoparticles of blue haze enhanced by anthropogenic pollution , 2009, Proceedings of the National Academy of Sciences.

[48]  I. Riipinen,et al.  Charged and total particle formation and growth rates during EUCAARI 2007 campaign in Hyytiälä , 2009 .

[49]  G. Meehl,et al.  SOLAR INFLUENCES ON CLIMATE , 2010 .

[50]  B. Ku,et al.  Relation between Electrical Mobility, Mass, and Size for Nanodrops 1–6.5 nm in Diameter in Air , 2009 .

[51]  M. Stolzenburg,et al.  Effect of Working Fluid on Sub-2 nm Particle Detection with a Laminar Flow Ultrafine Condensation Particle Counter , 2009 .

[52]  T. Petäjä,et al.  Sulfuric acid and OH concentrations in a boreal forest site , 2008 .

[53]  J. Pierce,et al.  Laboratory studies of H 2 SO 4 /H 2 O binary homogeneous nucleation from the SO 2 +OH reaction: evaluation of the experimental setup and preliminary results , 2008 .

[54]  Hanna Vehkamäki,et al.  Amines are likely to enhance neutral and ion-induced sulfuric acid-water nucleation in the atmosphere more effectively than ammonia , 2008 .

[55]  Shan‐Hu Lee,et al.  Laboratory‐measured nucleation rates of sulfuric acid and water binary homogeneous nucleation from the SO2 + OH reaction , 2008 .

[56]  John H. Seinfeld,et al.  Secondary aerosol formation from atmospheric reactions of aliphatic amines , 2007 .

[57]  Martin Bødker Enghoff,et al.  Experimental evidence for the role of ions in particle nucleation under atmospheric conditions , 2007, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[58]  T. Petäjä,et al.  Detecting charging state of ultra-fine particles: instrumental development and ambient measurements , 2006 .

[59]  J. Kirkby Cosmic Rays and Climate , 2005, 0804.1938.

[60]  Thomas Koop,et al.  Review of the vapour pressures of ice and supercooled water for atmospheric applications , 2005 .

[61]  M. Kulmala,et al.  Rapid Formation of Sulfuric Acid Particles at Near-Atmospheric Conditions , 2005, Science.

[62]  Edward Charles Fortner,et al.  Atmospheric New Particle Formation Enhanced by Organic Acids , 2004, Science.

[63]  K. Froyd,et al.  Atmospheric ion‐induced nucleation of sulfuric acid and water , 2004 .

[64]  C. O'Dowd,et al.  The use of the pulse height analyser ultrafine condensation particle counter (PHA-UCPC) technique applied to sizing of nucleation mode particles of differing chemical composition , 2004 .

[65]  Hanna Vehkamäki,et al.  Formation and growth rates of ultrafine atmospheric particles: a review of observations , 2004 .

[66]  C. Timmreck,et al.  An improved parameterization for sulfuric acid-water nucleation rates for tropospheric and stratospheric conditions , 2002 .

[67]  D. R. Hanson,et al.  Measurement of prenucleation molecular clusters in the NH3, H2SO4, H2O system , 2002 .

[68]  Christian Plass-Dülmer,et al.  Chemical ionization mass spectrometer for long-term measurements of atmospheric OH and H2SO4 , 2000 .

[69]  D. R. Hanson,et al.  Laboratory studies of particle nucleation: Initial results for H2SO4, H2O, and NH3 vapors , 1999 .

[70]  Ari Laaksonen,et al.  Analysis of the growth of nucleation mode particles observed in Boreal forest , 1998 .

[71]  Y. Viisanen,et al.  Experiments on gas–liquid nucleation of sulfuric acid and water , 1997 .

[72]  P. Mcmurry,et al.  H2SO4 vapor pressure of sulfuric acid and ammonium sulfate solutions , 1997 .

[73]  M. Kulmala,et al.  Small ion mobilities during particle formation from irradiated SO2 in humid air , 1995 .

[74]  Hannes Tammet,et al.  Size and mobility of nanometer particles, clusters and ions , 1995 .

[75]  F. Raes Entrainment of free tropospheric aerosols as a regulating mechanism for cloud condensation nuclei in the remote marine boundary layer , 1995 .

[76]  D. Tanner,et al.  Measurement of the gas phase concentration of H2SO4 and methane sulfonic acid and estimates of H2SO4 production and loss in the atmosphere , 1993 .

[77]  T. Vesala,et al.  Extended hydrates interaction model: Hydrate formation and the energetics of binary homogeneous nucleation , 1991 .

[78]  J. Seinfeld,et al.  Binary nucleation in acid–water systems. II. Sulfuric acid–water and a comparison with methanesulfonic acid–water , 1991 .

[79]  M. Kulmala,et al.  Binary nucleation of water–sulfuric acid system: Comparison of classical theories with different H2SO4 saturation vapor pressures , 1990 .

[80]  A. Jaecker-Voirol,et al.  Nucleation rate in a binary mixture of sulfuric acid and water vapor , 1988 .

[81]  G. Wilemski Revised classical binary nucleation theory for aqueous alcohol and acetone vapors , 1987 .

[82]  F. Arnold,et al.  Gaseous ammonia and ammonium ions in the free troposphere , 1986, Nature.

[83]  J. D. Morrison,et al.  Resonant charge exchange as a means of selective state excitation in the photodissociation spectroscopy of SO+2 , 1986 .

[84]  J. P. Friend,et al.  Nucleation by free radicals from the photooxidation of sulfur dioxide in air , 1980 .

[85]  J. Gras,et al.  On the vapor pressure of sulfuric acid , 1980 .

[86]  P. Mirabel,et al.  Experimental study of nucleation in binary mixtures: The nitric acid–water and sulfuric acid–water systems , 1978 .

[87]  J. Bricard,et al.  Experimental study on the nucleation of water vapor sulfuric acid binary system , 1977 .

[88]  H. Reiss,et al.  Transient nucleation in H2O–H2SO4 mixtures: A stochastic approach , 1976 .

[89]  F. J. Schelling,et al.  Experimental study of nucleation in vapor mixtures of sulfuric acid and water , 1976 .

[90]  H. Reiss,et al.  Theory of vapor phase nucleation in binary mixtures of water and sulfuric acid , 1974 .

[91]  Howard Reiss,et al.  Hydrates in supersaturated binary sulfuric acid‐water vapor , 1974 .

[92]  J. Katz,et al.  Binary homogeneous nucleation as a mechanism for the formation of aerosols , 1974 .

[93]  R. A. Cox Some experimental observations of aerosol formation in the photo-oxidation of sulphur dioxide , 1973 .

[94]  T. Vermeulen,et al.  VAPOR-LIQUID EQUILIBRIA FOR AQUEOUS SULFURIC ACID , 1964 .

[95]  G. J. Doyle Self‐Nucleation in the Sulfuric Acid‐Water System , 1961 .

[96]  L. W. Pollak,et al.  INSTRUCTION FOR USE OF PHOTO-ELECTRIC CONDENSATION NUCLEUS COUNTERS--THEIR CARE AND MAINTENANCE TOGETHER WITH CALIBRATION AND AUXILIARY TABLES. Geophysical Bulletin No. 16. Technical (Scientific) Note No. 6 , 1959 .

[97]  Howard Reiss,et al.  The Kinetics of Phase Transitions in Binary Systems , 1950 .

[98]  J. M. English,et al.  Clouds and Aerosols on the Terrestrial Planets , 2013 .

[99]  M. Kulmala,et al.  Quantum chemical studies of hydrate formation of h 2 so 4 and hso 4 – , 2007 .

[100]  M. Kulmala,et al.  Quantum chemical studies of hydrate formation of H2SO4 and HSO4 , 2007 .

[101]  M. Kulmala,et al.  An improved model for hydrate formation in sulfuric acid–water nucleation , 2002 .

[102]  J. Seinfeld,et al.  Experimental Measurement of Competitive Ion-Induced and Binary Homogeneous Nucleation in SO2/H2O/N2 Mixtures , 1997 .

[103]  Peter H. McMurry,et al.  An Ultrafine Aerosol Condensation Nucleus Counter , 1991 .

[104]  M. Lazaridis,et al.  Binary heterogeneous nucleation of a water-sulphuric acid system: The effect of hydrate interaction , 1991 .

[105]  F. Raes,et al.  Ion-induced aerosol formation in a H2O-H2SO4 system—II. Numerical calculations and conclusions , 1986 .

[106]  F. Raes,et al.  A synergism between ultraviolet and gamma radiation in producing aerosol particles from SO2H2SO4 laden atmospheres , 1985 .

[107]  T. S. Muraleedharan,et al.  An experimental study of the role of radon and its daughter products in the conversion of sulphur dioxide into aerosol particles in the atmosphere , 1984 .

[108]  Walter Roedel,et al.  Measurement of sulfuric acid saturation vapor pressure; Implications for aerosol formation by heteromolecular nucleation , 1979 .

[109]  D. Stauffer,et al.  Chemical nucleation theory for various humidities and pollutants , 1973 .

[110]  W. J. Megaw,et al.  The generation of condensation nuclei by ionising radiation , 1961 .

[111]  C. Wilson On the Condensation Nuclei Produced in Gases by the Action of Rontgen Rays, Uranium Rays, Ultra-Violet Light, and Other Agents , 1899 .

[112]  C. Wilson VI. The effect of Röntgen’s rays on cloudy condensation , 1896, Proceedings of the Royal Society of London.

[113]  Martin Bødker Enghoff,et al.  Results from the CERN pilot CLOUD experiment , 2009 .