Fast Quantum Fourier Transforms for a Class of Non-Abelian Groups

An algorithm is presented allowing the construction of fast Fourier transforms for any solvable group on a classical computer. The special structure of the recursion formula being the core of this algorithm makes it a good starting point to obtain systematically fast Fourier transforms for solvable groups on a quantum computer. The inherent structure of the Hilbert space imposed by the qubit architecture suggests to consider groups of order 2n first (where n is the number of qubits). As an example, fast quantum Fourier transforms for all 4 classes of nonabelian 2-groups with cyclic normal subgroup of index 2 are explicitly constructed in terms of quantum circuits. The (quantum) complexity of the Fourier transform for these groups of size 2n is O(n2) in all cases.

[1]  Torsten Minkwitz Algorithmensynthese für lineare Systeme mit Symmetrie , 1993 .

[2]  Sebastian Egner,et al.  Zur algorithmischen Zerlegungstheorie linearer Transformationen mit Symmetrie , 1997 .

[3]  Michael Clausen,et al.  Fast Fourier transforms , 1993 .

[4]  P. Høyer Efficient Quantum Transforms , 1997, quant-ph/9702028.

[5]  Robert Beals,et al.  Quantum computation of Fourier transforms over symmetric groups , 1997, STOC '97.

[6]  Martin Nilsson,et al.  Some Notes on Parallel Quantum Computation , 1998 .

[7]  B. Huppert Endliche Gruppen I , 1967 .

[8]  Markus Grassl,et al.  Quantum Reed-Solomon Codes , 1999, AAECC.

[9]  Alexei Y. Kitaev,et al.  Quantum measurements and the Abelian Stabilizer Problem , 1995, Electron. Colloquium Comput. Complex..

[10]  J. Tukey,et al.  An algorithm for the machine calculation of complex Fourier series , 1965 .

[11]  Barenco,et al.  Elementary gates for quantum computation. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[12]  Amir Fijany,et al.  Quantum Wavelet Transforms: Fast Algorithms and Complete Circuits , 1998, QCQC.

[13]  Jean-Pierre Serre,et al.  Linear representations of finite groups , 1977, Graduate texts in mathematics.

[14]  D. Coppersmith An approximate Fourier transform useful in quantum factoring , 2002, quant-ph/0201067.

[15]  Irving Reiner,et al.  Methods of Representation Theory , 1981 .

[16]  Markus Püschel Konstruktive Darstellungstheorie und Algorithmengenerierung , 1998 .

[17]  Daniel N. Rockmore,et al.  Some applications of generalized FFT's , 1997, Groups and Computation.

[18]  P. Diaconis,et al.  Efficient computation of the Fourier transform on finite groups , 1990 .

[19]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[20]  Michael Clausen,et al.  Fast Generalized Fourier Transforms , 1989, Theor. Comput. Sci..

[21]  Thomas Beth,et al.  On the Computational Complexity of the General Discrete Fourier Transform , 1987, Theor. Comput. Sci..

[22]  D. Rockmore,et al.  Generalized FFT's- A survey of some recent results , 1996, Groups and Computation.