Results of SPARO 2003: Mapping Magnetic Fields in Giant Molecular Clouds

We present results from the Austral Winter 2003 observing campaign of SPARO, a 450 μm polarimeter used with a 2 m telescope at the South Pole. We mapped large-scale magnetic fields in four GMCs in the Galactic disk: NGC 6334, the Carina Nebula, G333.6-0.2, and G331.5-0.1. We find a statistically significant correlation of the inferred field directions with the orientation of the Galactic plane. Specifically, three of the four GMCs (NGC 6334 is the exception) have mean field directions that are within 15° of the plane. The simplest interpretation is that the field direction tends to be preserved during the process of GMC formation. We have also carried out an analysis of published optical polarimetry data. For the closest of the SPARO GMCs, NGC 6334, we can compare the field direction in the cloud as measured by SPARO with the field direction in a larger region surrounding the cloud, as determined from optical polarimetry. For purposes of comparison, we also use optical polarimetry to determine field directions for 9-10 other regions of similar size. We find that the region surrounding NGC 6334 is an outlier in the distribution of field directions determined from optical polarimetry, just as the NGC 6334 cloud is an outlier in the distribution of cloud field directions determined by SPARO. In both cases the field direction corresponding to NGC 6334 is rotated away from the direction of the plane by a large angle. This finding is consistent with our suggestion that field direction tends to be preserved during GMC formation. Finally, by comparing the disorder in our magnetic field maps with the disorder seen in magnetic field maps derived from MHD turbulence simulations, we conclude that the magnetic energy density in our clouds is comparable to the turbulent energy density.

[1]  A. R. Hyland,et al.  Global aspects of the NGC 6334 star formation complex: an infrared survey , 1989 .

[2]  H. R. Dickel,et al.  The detailed structure of CO in molecular cloud complexes. I - NGC 6334 , 1977 .

[3]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[4]  D. Gezari,et al.  1.0 millimeter maps and radial density distributions of Southern H II/molecular cloud complexes , 1980 .

[5]  R. Dettmar,et al.  The Magnetized Plasma in Galaxy Evolution , 2005 .

[6]  R. Russell,et al.  Detection of the N II 122 and 205 micron lines - Densities in G333.6-0.2 , 1993 .

[7]  N. Morrell,et al.  Optical spectroscopy of XMEGA targets in the Carina Nebula – III. The multiple system Tr 16-104 (≡CPD −59° 2603) , 2001 .

[8]  B. T. Draine,et al.  Radiative Torques on Interstellar Grains: I. Superthermal Spinup , 1996 .

[9]  E. I. Vega,et al.  Intracluster Dust Polarization in the Carina Nebula , 1993 .

[10]  R. Fox,et al.  Classical Electrodynamics, 3rd ed. , 1999 .

[11]  J. Whiteoak,et al.  The 4830 MHz H2CO Absorption in the Direction of NGC 6334 , 1975 .

[12]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[13]  Carl Heiles 9286 Stars: An Agglomeration of Stellar Polarization Catalogs , 2000 .

[14]  R. Klessen,et al.  Control of star formation by supersonic turbulence , 2000, astro-ph/0301093.

[15]  Jessie L. Dotson,et al.  The Far-Infrared Polarization Spectrum: First Results and Analysis , 1999 .

[16]  Jessie L. Dotson,et al.  Far-Infrared Polarimetry of Galactic Clouds from the Kuiper Airborne Observatory , 2000 .

[17]  P. Price,et al.  Large-Scale Structure of the Carina Nebula , 2000, The Astrophysical journal.

[18]  J. Weingartner,et al.  Radiative Torques on Interstellar Grains. II. Grain Alignment , 1996, astro-ph/9611149.

[19]  J. Dickey,et al.  Fitting Together the H I Absorption and Emission in the Southern Galactic Plane Survey , 2003 .

[20]  James M. Cordes,et al.  Pulsar distances and the galactic distribution of free electrons , 1993 .

[21]  E. Rosolowsky,et al.  Giant Molecular Clouds in M33. II. High-Resolution Observations , 2003, astro-ph/0307322.

[22]  C. L. Kuo,et al.  High-Resolution Observations of the Cosmic Microwave Background Power Spectrum with ACBAR , 2002, astro-ph/0212289.

[23]  L. Bronfman,et al.  A deep CO survey of molecular clouds in the southern Milky Way , 1989 .

[24]  T. Arentoft,et al.  On the eclipsing nature of $\mathsf{CPD-59\degr2628}$ , 2001 .

[25]  L. Spitzer Physical processes in the interstellar medium , 1998 .

[26]  The Distance to the Perseus Spiral Arm in the Milky Way , 2005, Science.

[27]  D. Ward-Thompson,et al.  SCUBA Polarization Measurements of the Magnetic Field Strengths in the L183, L1544, and L43 Prestellar Cores , 2003, astro-ph/0305604.

[28]  CO (J = 4→3) and [C I] Observations of the Carina Molecular Cloud Complex , 2001, astro-ph/0101272.

[29]  James M. Stone,et al.  Density, Velocity, and Magnetic Field Structure in Turbulent Molecular Cloud Models , 2000, astro-ph/0008454.

[30]  E. Ostriker,et al.  Accepted for publication in the Astrophysical Journal Amplification, Saturation, and Q Thresholds for Runaway: Growth of Self-Gravitating Structures in Models of Magnetized Galactic Gas Disks , 2001 .

[31]  A. Goodman,et al.  The Polarizing Power of the Interstellar Medium in Taurus , 1998, astro-ph/9803199.

[32]  T. Henning,et al.  Measurements of the Magnetic Field Geometry and Strength in Bok Globules , 2001 .

[33]  John E. Vaillancourt,et al.  Analysis of the Far-Infrared/Submillimeter Polarization Spectrum Based on Temperature Maps of Orion , 2002 .

[34]  J. Storey,et al.  H110α recombination-line emission and 4.8-GHz continuum emission in the Carina nebula , 2001, astro-ph/0104344.

[35]  E. Branchini,et al.  COSMIC EVOLUTION AND GALAXY FORMATION: STRUCTURE, INTERACTIONS, AND FEEDBACK , 2000 .

[36]  Jessie L. Dotson,et al.  A Primer on Far‐Infrared Polarimetry , 2000 .

[37]  R. Blandford,et al.  XII CANARY ISLANDS WINTER SCHOOL OF ASTROPHYSICS , 2022 .

[38]  David T. Chuss,et al.  Early Results from SPARO: Instrument Characterization and Polarimetry of NGC 6334 , 2004 .

[39]  Christine D. Wilson,et al.  Magnetic Fields in Star-forming Molecular Clouds. I. The First Polarimetry of OMC-3 in Orion A , 1999, astro-ph/9911148.

[40]  S. Sandford,et al.  Modeling the Unidentified Infrared Emission with Combinations of Polycyclic Aromatic Hydrocarbons , 1999, The Astrophysical journal.

[41]  A. Dolginov Orientation of interstellar and interplanetary grains , 1972 .

[42]  Kazunori Ishibashi,et al.  The Shape and Orientation of the Homunculus Nebula Based on Spectroscopic Velocities , 2001 .

[43]  M. L. Norman,et al.  Magnetic field diagnostics based on far-infrared polarimetry: tests using numerical simulations , 2001 .

[44]  B. Krauskopf,et al.  Proc of SPIE , 2003 .

[45]  J. Dotson,et al.  Improved Data Reduction for Far‐Infrared/Submillimeter Polarimetry , 2005 .

[46]  G. Neugebauer,et al.  The H II region G333.6-0.2, a very powerful 1-20 micron source. , 1973 .

[47]  Kris Davidson,et al.  Eta carinae and its environment , 1997 .

[48]  E. Peeters,et al.  Polycyclic Aromatic Hydrocarbons as a Tracer of Star Formation? , 2004 .

[49]  L. Bronfman,et al.  Molecular clouds in the Carina arm - The largest objects, associated regions of star formation, and the Carina arm in the Galaxy , 1988 .

[50]  P. A. R. Ade,et al.  A submillimetre imaging polarimeter at the James Clerk Maxwell Telescope , 2003 .

[51]  M. Roth,et al.  Imaging study of NGC 3372, the Carina nebula – I. UBVRIJHK photometry of Tr 14, Tr 15, Tr 16 and Car I , 2003 .

[52]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[53]  S. Masi,et al.  First detection of polarization of the submillimetre diffuse galactic dust emission by Archeops , 2003, astro-ph/0306222.

[54]  Enrico Fermi,et al.  Magnetic fields in spiral arms , 1953 .

[55]  P. A. R. Ade,et al.  Stability of the Submillimeter Brightness of the Atmosphere above Mauna Kea, Chajnantor, and the South Pole , 2003 .

[56]  A. Lazarian,et al.  Grain Alignment by Radiation in Dark Clouds and Cores , 2005 .

[57]  Woong-Tae Kim,et al.  Magnetorotationally Driven Galactic Turbulence and the Formation of Giant Molecular Clouds , 2003, astro-ph/0309080.

[58]  Jessie L. Dotson,et al.  SPARO: the submillimeter polarimeter for Antarctic remote observing , 1998, Astronomical Telescopes and Instrumentation.

[59]  J. Whiteoak HIGH-RESOLUTION IMAGES OF THE DUST AND IONIZED GAS DISTRIBUTION IN THE CARINA NEBULA , 1994 .

[60]  J. Hough,et al.  Interstellar Extinction and Polarization in the Taurus Dark Clouds: The Optical Properties of Dust near the Diffuse/Dense Cloud Interface , 2001 .

[61]  J. P. Laboratory,et al.  Interferometric Mapping of Magnetic Fields in Star-forming Regions. II. NGC 2024 FIR 5 , 2001, astro-ph/0110682.

[62]  K. Tomisaka SUPERBUBBLES IN MAGNETIZED INTERSTELLAR MEDIA : BLOWOUT OR CONFINEMENT ? , 1998, astro-ph/9804029.

[63]  Garry Robinson,et al.  Studies of ultracompact H II regions — I. Methanol maser survey of IRAS-selected sources , 1997 .

[64]  S. Megeath,et al.  A Near-Infrared/Millimeter-Wave Study of Six Fourth-Quadrant High-Mass Star Formation Regions , 2004 .

[65]  Jessie L. Dotson,et al.  Submillimeter Polarimetric Observations of the Galactic Center , 2000 .

[66]  R. Crutcher What Drives Star Formation? , 2003 .