Heterostructures and superlattices in one-dimensional nanoscale semiconductors

One-dimensional (1D) semiconductor nanostructures are of prime interest due to their potentials in investigating the size and dimensionality dependence of the materials’ physical properties and constructing nanoscale electronic and optoelectronic devices. Recent advances in the design and control of heterostructures and superlattices in 1D nanoscale semiconductors have opened the door to new device concepts. 1D heterostructures consisting of two or more important functional materials are of prime importance for revealing unique properties and essential for developing potential nanoelectronic and optoelectronic devices. On the other hand, the controlled growth of twinned superlattices within a single nanostructure could facilitate bandgap engineering and reveal novel electronic behaviours. In addition, an attractive challenge is to achieve the entire growth control within an individual nanostructure, e.g. to make highly reproducible, periodically twinned superlattices with an adjustable twin spacing. This Highlight article reviews some recent key advances in the field and outlines potential future areas that require immediate research and development.

[1]  D. Golberg,et al.  One-dimensional ZnS-based Hetero-, Core/shell and Hierarchical Nanostructures , 2009 .

[2]  C. Ye,et al.  Synthesis, Growth Mechanism, and Applications of Zinc Oxide Nanomaterials , 2009 .

[3]  Liang Li,et al.  Nanotube Arrays in Porous Anodic Alumina Membranes , 2009 .

[4]  C. N. R. Rao,et al.  Growth Kinetics of Nanocrystals and Nanorods by Employing Small-angle X-ray Scattering (SAXS) and Other Techniques , 2009 .

[5]  B. Su,et al.  ZnO@Porous Media, Their PL and Laser Effect , 2009 .

[6]  Guanghai Li Xiaosheng Fang Liang Li Bi-based Nanowire and Nanojunction Arrays: Fabrication and Physical Properties , 2009 .

[7]  Bando Yoshio,et al.  One-dimensional (1-D) nanoscale heterostructures , 2009 .

[8]  M. Zacharias,et al.  Manipulation of Crawling Growth for the Formation of Sub-millimeter Long ZnO Nanowalls , 2009 .

[9]  Tammy Y. Olson,et al.  Structural and Optical Properties and Emerging Applications of Metal Nanomaterials , 2009 .

[10]  Lei Lu Current Progress of Mechanical Properties of Metals with Nano-scale Twins , 2009 .

[11]  Jianfeng Ye,et al.  Solution‐Phase Synthesis of One‐Dimensional Semiconductor Nanostructures , 2009 .

[12]  C. Ballif,et al.  Axial p-n junctions realized in silicon nanowires by ion implantation. , 2009, Nano letters.

[13]  Jinhui Song,et al.  ZnO-ZnS heterojunction and ZnS nanowire arrays for electricity generation. , 2009, ACS nano.

[14]  P. El-Khoury,et al.  Radiative recombination of spatially extended excitons in (ZnSe/CdS)/CdS heterostructured nanorods. , 2009, Journal of the American Chemical Society.

[15]  P. Wu,et al.  Development of porous 316L stainless steel with controllable microcellular features using selective laser melting , 2008 .

[16]  A. Javey,et al.  Formation and characterization of NixInAs/InAs nanowire heterostructures by solid source reaction. , 2008, Nano letters.

[17]  Chunhua Yan,et al.  Controlled synthesis of rare earth nanostructures , 2008 .

[18]  L. Allard,et al.  Realization of defect-free epitaxial core-shell GaAs/AlGaAs nanowire heterostructures , 2008 .

[19]  S. Gu,et al.  Epitaxial Growth of ZnO Nanowires on ZnS Nanobelts by Metal Organic Chemical Vapor Deposition , 2008 .

[20]  Lih-Juann Chen,et al.  Coaxial metal-oxide-semiconductor (MOS) Au/Ga2O3/GaN nanowires. , 2008, Nano letters.

[21]  Yong Ding,et al.  Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers. , 2008, Nature materials.

[22]  Y. Bando,et al.  Structure and cathodoluminescence of individual ZnS/ZnO biaxial nanobelt heterostructures. , 2008, Nano letters.

[23]  Chennupati Jagadish,et al.  Nearly intrinsic exciton lifetimes in single twin-free GaAs/AlGaAs core-shell nanowire heterostructures , 2008 .

[24]  E. Bakkers,et al.  Twinning superlattices in indium phosphide nanowires , 2008, Nature.

[25]  X. C. Li,et al.  Experimental investigation and modelling of microstructural variables of Al–4Cu–Mg alloy , 2008 .

[26]  Peidong Yang,et al.  Silicon nanowire radial p-n junction solar cells. , 2008, Journal of the American Chemical Society.

[27]  N. Richards,et al.  Effect of filler alloy composition on post-weld heat treatment cracking in GTA welded cast Inconel 738LC superalloy , 2008 .

[28]  R. Misra,et al.  Comparative study of antimicrobial and photocatalytic activity in titania encapsulated composite nanoparticles with different dopants , 2008 .

[29]  Y. Bando,et al.  Synthesis, structure, and multiply enhanced field-emission properties of branched ZnS nanotube-in nanowire core-shell heterostructures. , 2008, ACS nano.

[30]  S. Gradečak,et al.  Controlled growth of ternary alloy nanowires using metalorganic chemical vapor deposition. , 2008, Nano letters.

[31]  Lai-fei Cheng,et al.  Effect of complexing agents on properties of electroless Ni–P deposits , 2008 .

[32]  S. Zwaag,et al.  Irreversible thermodynamics modelling of plastic deformation of metals , 2008 .

[33]  Guanghai Li,et al.  Kinetic versus thermodynamic control over growth process of electrodeposited Bi/BiSb superlattice nanowires. , 2008, Nano letters.

[34]  K. Lew,et al.  Diameter dependent growth rate and interfacial abruptness in vapor-liquid-solid Si/Si1-xGex heterostructure nanowires. , 2008, Nano letters.

[35]  Federico Capasso,et al.  Optical properties of rotationally twinned InP nanowire heterostructures. , 2008, Nano letters.

[36]  Dmitri Golberg,et al.  Inorganic semiconductor nanostructures and their field-emission applications , 2008 .

[37]  T. Shimizu,et al.  Aligned Nanocables: Controlled Sheathing of CuO Nanowires by a Self‐Assembled Tubular Glycolipid , 2007 .

[38]  C. Zhi,et al.  Ultrafine ZnS Nanobelts as Field Emitters , 2007 .

[39]  Xiaocheng Jiang,et al.  InAs/InP radial nanowire heterostructures as high electron mobility devices. , 2007, Nano letters.

[40]  Lin-Wang Wang,et al.  Spontaneous Superlattice Formation in Nanorods Through Partial Cation Exchange , 2007, Science.

[41]  A. Mieszawska,et al.  The synthesis and fabrication of one-dimensional nanoscale heterojunctions. , 2007, Small.

[42]  M. Gao,et al.  Twinned SiC Zigzag Nanoneedles , 2007 .

[43]  M. José-Yacamán,et al.  Defect structure in nanoalloys , 2007 .

[44]  J. Rogers,et al.  Structural forms of single crystal semiconductor nanoribbons for high-performance stretchable electronics , 2007 .

[45]  Margaret A. K. Ryan,et al.  Electrodeposition of Thermoelectric Superlattice Nanowires , 2007 .

[46]  P. Eklund,et al.  Coherent twinning phenomena: towards twinning superlattices in III-V semiconducting nanowires. , 2006, Nano letters.

[47]  M. Yacamán,et al.  The role of twinning in shape evolution of anisotropic noble metal nanostructures , 2006 .

[48]  Zhong Lin Wang,et al.  Periodically twinned nanowires and polytypic nanobelts of ZnS: The role of mass diffusion in vapor-liquid-solid growth. , 2006, Nano letters.

[49]  Charles M. Lieber,et al.  Dopant-free GaN/AlN/AlGaN radial nanowire heterostructures as high electron mobility transistors. , 2006, Nano letters.

[50]  Charles M. Lieber,et al.  Ge/Si nanowire heterostructures as high-performance field-effect transistors , 2006, Nature.

[51]  Liang Li,et al.  Conversion of a Bi nanowire array to an array of Bi-Bi2O3 core-shell nanowires and Bi2O3 nanotubes. , 2006, Small.

[52]  P. Cui,et al.  Direct electrodeposition of highly dense Bi/Sb superlattice nanowire arrays. , 2005, Journal of the American Chemical Society.

[53]  Charles M. Lieber,et al.  Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes. , 2005, Nano letters.

[54]  X. Fang,et al.  Twinning‐Mediated Growth of Al2O3 Nanobelts and Their Enhanced Dielectric Responses , 2005 .

[55]  C. Lieber,et al.  Gallium Nitride-Based Nanowire Radial Heterostructures for Nanophotonics , 2004 .

[56]  Yu-Ming Lin,et al.  Thermoelectric properties of superlattice nanowires , 2003 .

[57]  Younan Xia,et al.  One‐Dimensional Nanostructures: Synthesis, Characterization, and Applications , 2003 .

[58]  Charles M. Lieber,et al.  Growth of nanowire superlattice structures for nanoscale photonics and electronics , 2002, Nature.

[59]  Peidong Yang,et al.  Block-by-Block Growth of Single-Crystalline Si/SiGe Superlattice Nanowires , 2002 .

[60]  Lars Samuelson,et al.  One-dimensional steeplechase for electrons realized , 2002 .

[61]  Zhong Lin Wang,et al.  Phase Transformation, Coalescence, and Twinning of Monodisperse FePt Nanocrystals , 2001 .

[62]  Zhong Lin Wang,et al.  Nanobelts of Semiconducting Oxides , 2001, Science.

[63]  M. Dresselhaus,et al.  Thermoelectric figure of merit of a one-dimensional conductor. , 1993, Physical review. B, Condensed matter.

[64]  K. Dick,et al.  Controlled polytypic and twin-plane superlattices in iii-v nanowires. , 2009, Nature nanotechnology.

[65]  Shuhong Yu,et al.  Recent advances in oriented attachment growth and synthesis of functional materials: concept, evidence, mechanism, and future , 2009 .

[66]  Lide Zhang,et al.  Controlled growth and characterization methods of semiconductor nanomaterials. , 2008, Journal of nanoscience and nanotechnology.

[67]  Xiaosheng Fang,et al.  Temperature‐Controlled Catalytic Growth of ZnS Nanostructures by the Evaporation of ZnS Nanopowders , 2005 .