Formation of exceptional points in pseudo-Hermitian systems

Motivated by the recent growing interest in the field of $\mathcal{P}\mathcal{T}$-symmetric Hamiltonian systems we theoretically study the emergency of singularities called Exceptional Points ($\textit{EP}$s) in the eigenspectrum of pseudo-Hermitian Hamiltonian as the strength of Hermiticity-breaking terms turns on. Using general symmetry arguments, we characterize the separate energy levels by a topological $\mathbb{Z}_2$ index which corresponds to the signs $\pm 1$ of the eigenvalues of pseudo-metric operator $\hat \zeta$ in the absence of Hermiticity-breaking terms. After that, we show explicitly that the formation of second-order $\textit{EP}$s is governed by this $\mathbb{Z}_2$-index: only the pairs of levels with $\textit{opposite}$ index can provide second-order $\textit{EP}$s. Our general analysis is accompanied by a detailed study of $\textit{EP}$s appearance in an exemplary $\mathcal{P}\mathcal{T}$-symmetric pseudo-Hermitian system with parity operator in the role of $\hat \zeta$: a transverse-field Ising spin chain with a staggered imaginary longitudinal field. Using analytically computed parity indices of all the levels, we analyze the eigenspectrum of the model in general, and the formation of third-order $\textit{EP}$s in particular

[1]  K. B. Whaley,et al.  Speeding up entanglement generation by proximity to higher-order exceptional points , 2022, 2210.05048.

[2]  M. Fistul,et al.  Linear response for pseudo-Hermitian Hamiltonian systems: Application to PT -symmetric qubits , 2022, Physical Review B.

[3]  Guancong Ma,et al.  Non-Hermitian topology and exceptional-point geometries , 2022, Nature Reviews Physics.

[4]  Flore K. Kunst,et al.  Realizing exceptional points of any order in the presence of symmetry , 2022, Physical Review Research.

[5]  Y. Joglekar,et al.  Conserved quantities in non-Hermitian systems via vectorization method , 2022, 2201.05019.

[6]  M. Hennrich,et al.  Non-Hermitian dynamics and PT -symmetry breaking in interacting mesoscopic Rydberg platforms , 2021, Physical Review A.

[7]  Shu Chen,et al.  Knot topology of exceptional point and non-Hermitian no-go theorem , 2021, 2111.11346.

[8]  K. Schmidt,et al.  High-order series expansion of non-Hermitian quantum spin models , 2021, Physical Review B.

[9]  E. Bergholtz,et al.  Classification of exceptional nodal topologies protected by PT symmetry , 2021, Physical Review B.

[10]  Y. Hatsugai,et al.  Symmetry-Protected Multifold Exceptional Points and Their Topological Characterization. , 2021, Physical review letters.

[11]  Wei Zhang,et al.  Experimental Determination of PT-Symmetric Exceptional Points in a Single Trapped Ion. , 2021, Physical review letters.

[12]  Somnath Ghosh,et al.  Successive switching among four states in a gain-loss-assisted optical microcavity hosting exceptional points up to order four , 2021 .

[13]  S. Dogra,et al.  Quantum simulation of parity–time symmetry breaking with a superconducting quantum processor , 2021, Communications Physics.

[14]  Jan Carl Budich,et al.  Exceptional topology of non-Hermitian systems , 2019, 1912.10048.

[15]  Y. Ashida,et al.  Non-Hermitian physics , 2020, Advances in Physics.

[16]  Somnath Ghosh,et al.  Third-order Exceptional Point and Successive Switching among Three States in a Degenerate Optical Microcavity , 2020, 2003.10924.

[17]  Mohammad P. Hokmabadi,et al.  Non-Hermitian ring laser gyroscopes with enhanced Sagnac sensitivity , 2019, Nature.

[18]  H. Qin,et al.  PT-symmetry entails pseudo-Hermiticity regardless of diagonalizability , 2019, 1904.01967.

[19]  Franck Assogba Onanga,et al.  Conserved quantities in parity-time symmetric systems , 2019 .

[20]  C. T. Chan,et al.  Anisotropic exceptional points of arbitrary order , 2019, Physical Review B.

[21]  Somnath Ghosh,et al.  Minimally asymmetric state conversion around exceptional singularities in a specialty optical microcavity , 2019, Journal of Optics.

[22]  Yogesh N. Joglekar,et al.  Quantum state tomography across the exceptional point in a single dissipative qubit , 2019, Nature Physics.

[23]  Xing Rong,et al.  Observation of parity-time symmetry breaking in a single-spin system , 2018, Science.

[24]  Yogesh N. Joglekar,et al.  Observation of parity-time symmetry breaking transitions in a dissipative Floquet system of ultracold atoms , 2016, Nature Communications.

[25]  Somnath Ghosh,et al.  Nonadiabatic Modal Dynamics Around Exceptional Points in an All-Lossy Dual-Mode Optical Waveguide: Toward Chirality-Driven Asymmetric Mode Conversion , 2018, 1809.07617.

[26]  Harry Buhrman,et al.  The quantum technologies roadmap: a European community view , 2018, New Journal of Physics.

[27]  C. T. Chan,et al.  Dynamically Encircling Exceptional Points: In situ Control of Encircling Loops and the Role of the Starting Point , 2018, Physical Review X.

[28]  Lan Yang,et al.  Exceptional points enhance sensing in an optical microcavity , 2017, Nature.

[29]  Demetrios N. Christodoulides,et al.  Enhanced sensitivity at higher-order exceptional points , 2017, Nature.

[30]  Somnath Ghosh,et al.  Next-nearest-neighbor resonance coupling and exceptional singularities in degenerate optical microcavities , 2017, 1704.04951.

[31]  Somnath Ghosh,et al.  Connected hidden singularities and toward successive state flipping in degenerate optical microcavities , 2017 .

[32]  Yuang Wang,et al.  Lasing and anti-lasing in a single cavity , 2016, Nature Photonics.

[33]  Ulrich Kuhl,et al.  Dynamically encircling an exceptional point for asymmetric mode switching , 2016, Nature.

[34]  Y. Chong,et al.  Exceptional points and asymmetric mode conversion in quasi-guided dual-mode optical waveguides , 2016, Scientific Reports.

[35]  Jan Wiersig,et al.  Sensors operating at exceptional points: General theory , 2016 .

[36]  Z. Song,et al.  Finite-temperature quantum criticality in a complex-parameter plane , 2015, 1506.05553.

[37]  Jan Wiersig,et al.  Enhancing the Sensitivity of Frequency and Energy Splitting Detection by Using Exceptional Points: Application to Microcavity Sensors for Single-Particle Detection , 2014 .

[38]  G. Strasser,et al.  Reversing the pump dependence of a laser at an exceptional point , 2014, Nature Communications.

[39]  Z. Song,et al.  Conventional quantum phase transition driven by a complex parameter in a non-Hermitian PT-symmetric Ising model , 2014, 1404.0805.

[40]  Alexei A. Mailybaev,et al.  Time-asymmetric quantum-state-exchange mechanism , 2013, 1302.1394.

[41]  H. Cartarius,et al.  Model of a PT-symmetric Bose-Einstein condensate in a δ-function double-well potential , 2012 .

[42]  Ali Mostafazadeh,et al.  Pseudo-Hermitian Representation of Quantum Mechanics , 2008, 0810.5643.

[43]  L. Brown Dirac ’ s The Principles of Quantum Mechanics * , 2006 .

[44]  Heidelberg,et al.  Encircling an exceptional point. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[45]  A. Mostafazadeh Pseudo-Hermiticity versus PT-symmetry III: Equivalence of pseudo-Hermiticity and the presence of antilinear symmetries , 2002, math-ph/0203005.

[46]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[47]  A. Mostafazadeh Pseudo-Hermiticity versus PT-symmetry. II. A complete characterization of non-Hermitian Hamiltonians with a real spectrum , 2001, math-ph/0110016.

[48]  A. Mostafazadeh Pseudo-Hermiticity versus PT symmetry: The necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian , 2001, math-ph/0107001.

[49]  Orlando,et al.  Josephson Persistent-Current Qubit , 2022 .

[50]  P. Hänggi,et al.  Driven quantum tunneling , 1998 .

[51]  I. M. Gelfand,et al.  On the structure of the regions of stability of linear canonical systems of differential equations with periodic coefficients , 1987 .

[52]  E. Lieb,et al.  Two Soluble Models of an Antiferromagnetic Chain , 1961 .

[53]  J. Neumann,et al.  Uber merkwürdige diskrete Eigenwerte. Uber das Verhalten von Eigenwerten bei adiabatischen Prozessen , 1929 .