Bootstrapping Neural Networks
暂无分享,去创建一个
[1] Jörg Polzehl,et al. Model Selection, Transformations and Variance Estimation in Nonlinear Regression , 1999 .
[2] A. Messéan,et al. Some simulations results about confidence intervals and bootstrap methods in nonlinear regression , 1990 .
[3] W. Härdle. Applied Nonparametric Regression , 1992 .
[4] Robert Tibshirani,et al. An Introduction to the Bootstrap , 1994 .
[5] S. Huet,et al. Exactitude au second ordre des intervalles de confiance bootstrap pour les paramètres d'un modèle de régression non linéaire , 1989 .
[6] Michael H. Neumann,et al. Regression-type inference in nonparametric autoregression , 1998 .
[7] Halbert White,et al. Connectionist nonparametric regression: Multilayer feedforward networks can learn arbitrary mappings , 1990, Neural Networks.
[8] Enno Mammen,et al. Properties of the nonparametric autoregressive bootstrap , 2002 .
[9] Michael H. Neumann,et al. Bootstrap Confidence Bands For The Autoregression Function , 1996 .
[10] Halbert White,et al. Bootstrapping Confidence Intervals for Clinical Input Variable Effects in a Network Trained to Identify the Presence of Acute Myocardial Infarction , 1995, Neural Computation.
[11] W. Härdle,et al. Bootstrapping in Nonparametric Regression: Local Adaptive Smoothing and Confidence Bands , 1988 .
[12] H. White. Some Asymptotic Results for Learning in Single Hidden-Layer Feedforward Network Models , 1989 .
[13] J. Shao,et al. The jackknife and bootstrap , 1996 .
[14] E. Mammen,et al. Bootstrap of kernel smoothing in nonlinear time series , 2002 .
[15] James Stephen Marron,et al. BOOTSTRAP SIMULTANEOUS ERROR BARS FOR NONPARAMETRIC REGRESSION , 1991 .
[16] Apostolos-Paul N. Refenes,et al. Neural model identification, variable selection and model adequacy , 1999 .
[17] D. Freedman. Bootstrapping Regression Models , 1981 .
[18] P. Hall. The Bootstrap and Edgeworth Expansion , 1992 .
[19] Shun-ichi Amari,et al. Network information criterion-determining the number of hidden units for an artificial neural network model , 1994, IEEE Trans. Neural Networks.
[20] Halbert White,et al. Learning in Artificial Neural Networks: A Statistical Perspective , 1989, Neural Computation.
[21] Kurt Hornik,et al. Multilayer feedforward networks are universal approximators , 1989, Neural Networks.
[22] W. Härdle,et al. Optimal Bandwidth Selection in Nonparametric Regression Function Estimation , 1985 .
[23] J. Franke,et al. BOOTSTRAPPING STATIONARY AUTOREGRESSIVE MOVING-AVERAGE MODELS , 1992 .