Algorithms for Computation of Concept Trilattice of Triadic Fuzzy Context

Triadic concept analysis (TCA) is a method of relational data analysis whose aim is to extract a hierarchically structured set of particular clusters from a three-way data describing objects, attributes, and conditions. We present two algorithms for the problem of computing all such clusters from a data describing degrees to which objects have attributes under conditions.

[1]  Bernhard Ganter,et al.  Formal Concept Analysis: Mathematical Foundations , 1998 .

[2]  Bernard De Baets,et al.  Computing the Lattice of All Fixpoints of a Fuzzy Closure Operator , 2010, IEEE Transactions on Fuzzy Systems.

[3]  Klaus Biedermann,et al.  An equational theory for trilattices , 1999 .

[4]  Rasmus Bro,et al.  Multi-way Analysis with Applications in the Chemical Sciences , 2004 .

[5]  Rudolf Wille,et al.  Restructuring Lattice Theory: An Approach Based on Hierarchies of Concepts , 2009, ICFCA.

[6]  Radim Belohlávek,et al.  Triadic concept lattices of data with graded attributes , 2012, Int. J. Gen. Syst..

[7]  Rudolf Wille,et al.  The Basic Theorem of triadic concept analysis , 1995 .

[8]  John F. Sowa,et al.  Conceptual Structures: Applications, Implementation and Theory , 1995, Lecture Notes in Computer Science.

[9]  Radim Bělohlávek,et al.  Fuzzy Relational Systems: Foundations and Principles , 2002 .

[10]  R. P. Dilworth Non-Commutative Residuated Lattices , 1939 .

[11]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[12]  R. Belohlávek Fuzzy Relational Systems: Foundations and Principles , 2002 .

[13]  P. Kroonenberg Applied Multiway Data Analysis , 2008 .

[14]  Petr Hájek,et al.  Metamathematics of Fuzzy Logic , 1998, Trends in Logic.

[15]  Andreas Hotho,et al.  TRIAS--An Algorithm for Mining Iceberg Tri-Lattices , 2006, Sixth International Conference on Data Mining (ICDM'06).

[16]  Rudolf Wille,et al.  A Triadic Approach to Formal Concept Analysis , 1995, ICCS.

[17]  Bernhard Ganter,et al.  Formal Concept Analysis , 2013 .

[18]  Radim Belohlávek,et al.  Optimal decompositions of matrices with entries from residuated lattices , 2012, J. Log. Comput..

[19]  R. P. Dilworth,et al.  Residuated Lattices. , 1938, Proceedings of the National Academy of Sciences of the United States of America.

[20]  Radim Belohlávek,et al.  Fuzzy Galois Connections , 1999, Math. Log. Q..

[21]  Vilém Vychodil,et al.  Factorizing Three-Way Ordinal Data Using Triadic Formal Concepts , 2011, FQAS.

[22]  Radim Belohlávek,et al.  Reduction and a Simple Proof of Characterization of Fuzzy Concept Lattices , 2001, Fundam. Informaticae.