From Lithium-Ion to Sodium-Ion Batteries: Advantages, Challenges, and Surprises.

Mobile and stationary energy storage by rechargeable batteries is a topic of broad societal and economical relevance. Lithium-ion battery (LIB) technology is at the forefront of the development, but a massively growing market will likely put severe pressure on resources and supply chains. Recently, sodium-ion batteries (SIBs) have been reconsidered with the aim of providing a lower-cost alternative that is less susceptible to resource and supply risks. On paper, the replacement of lithium by sodium in a battery seems straightforward at first, but unpredictable surprises are often found in practice. What happens when replacing lithium by sodium in electrode reactions? This review provides a state-of-the art overview on the redox behavior of materials when used as electrodes in lithium-ion and sodium-ion batteries, respectively. Advantages and challenges related to the use of sodium instead of lithium are discussed.

[1]  John B. Goodenough,et al.  Lithium insertion into manganese spinels , 1983 .

[2]  Pengjian Zuo,et al.  Oxygen vacancies in SnO 2 surface coating to enhance the activation of layered Li-Rich Li 1.2 Mn 0.54 Ni 0.13 Co 0.13 O 2 cathode material for Li-ion batteries , 2016 .

[3]  Emanuel Peled,et al.  The Electrochemical Behavior of Alkali and Alkaline Earth Metals in Nonaqueous Battery Systems—The Solid Electrolyte Interphase Model , 1979 .

[4]  Gerbrand Ceder,et al.  Synthesis and Stoichiometry of Different Layered Sodium Cobalt Oxides , 2014 .

[5]  D. Stevens,et al.  The Mechanisms of Lithium and Sodium Insertion in Carbon Materials , 2001 .

[6]  Y. Ein‐Eli,et al.  A critical review-promises and barriers of conversion electrodes for Li-ion batteries , 2017, Journal of Solid State Electrochemistry.

[7]  Xiulei Ji,et al.  New Mechanistic Insights on Na-Ion Storage in Nongraphitizable Carbon. , 2015, Nano letters.

[8]  Y. S. Lee,et al.  A new type of orthorhombic LiFeO2 with advanced battery performance and its structural change during cycling , 2003 .

[9]  V. Chevrier,et al.  Alloy negative electrodes for Li-ion batteries. , 2014, Chemical reviews.

[10]  D. Mitlin,et al.  Anodes for sodium ion batteries based on tin-germanium-antimony alloys. , 2014, ACS nano.

[11]  Clement Bommier,et al.  Recent Development on Anodes for Na‐Ion Batteries , 2015 .

[12]  A. J. Morris,et al.  Investigating Sodium Storage Mechanisms in Tin Anodes: A Combined Pair Distribution Function Analysis, Density Functional Theory, and Solid-State NMR Approach. , 2017, Journal of the American Chemical Society.

[13]  Tsutomu Miyasaka,et al.  Tin-Based Amorphous Oxide: A High-Capacity Lithium-Ion-Storage Material , 1997 .

[14]  K. Kubota,et al.  Sodium and Manganese Stoichiometry of P2-Type Na2/3 MnO2. , 2016, Angewandte Chemie.

[15]  Mark N. Obrovac,et al.  Reversible Insertion of Sodium in Tin , 2012 .

[16]  Donghan Kim,et al.  Enabling Sodium Batteries Using Lithium‐Substituted Sodium Layered Transition Metal Oxide Cathodes , 2011 .

[17]  Hiroaki Yoshida,et al.  NaFe0.5Co0.5O2 as high energy and power positive electrode for Na-ion batteries☆ , 2013 .

[18]  D. Aurbach,et al.  Al Doping for Mitigating the Capacity Fading and Voltage Decay of Layered Li and Mn‐Rich Cathodes for Li‐Ion Batteries , 2016 .

[19]  Doron Aurbach,et al.  Comparison between Na-Ion and Li-Ion Cells: Understanding the Critical Role of the Cathodes Stability and the Anodes Pretreatment on the Cells Behavior. , 2016, ACS applied materials & interfaces.

[20]  Jun Wang,et al.  Probing three-dimensional sodiation–desodiation equilibrium in sodium-ion batteries by in situ hard X-ray nanotomography , 2015, Nature Communications.

[21]  Petr Novák,et al.  Insertion Electrode Materials for Rechargeable Lithium Batteries , 1998 .

[22]  G. Cao,et al.  A promising cathode for Li-ion batteries: Li 3 V 2 (PO 4 ) 3 , 2016 .

[23]  Wataru Murata,et al.  Redox reaction of Sn-polyacrylate electrodes in aprotic Na cell , 2012 .

[24]  T. Sheela,et al.  Conversion reactions: a new pathway to realise energy in lithium-ion battery—review , 2009 .

[25]  Nam-Soon Choi,et al.  Charge carriers in rechargeable batteries: Na ions vs. Li ions , 2013 .

[26]  Rémi Dedryvère,et al.  Towards high energy density sodium ion batteries through electrolyte optimization , 2013 .

[27]  Jian Yu Huang,et al.  Microstructural evolution of tin nanoparticles during in situ sodium insertion and extraction. , 2012, Nano letters.

[28]  Gerbrand Ceder,et al.  Challenges for Na-ion Negative Electrodes , 2011 .

[29]  A. Yamada,et al.  Role of Ligand-to-Metal Charge Transfer in O3-Type NaFeO2–NaNiO2 Solid Solution for Enhanced Electrochemical Properties , 2014 .

[30]  K. Kang,et al.  Conditions for Reversible Na Intercalation in Graphite: Theoretical Studies on the Interplay Among Guest Ions, Solvent, and Graphite Host , 2017 .

[31]  Hiroaki Yoshida,et al.  Crystal Structures and Electrode Performance of Alpha-NaFeO2 for Rechargeable Sodium Batteries , 2012 .

[32]  J. E. Lee,et al.  Facile formation of a Li3PO4 coating layer during the synthesis of a lithium-rich layered oxide for high-capacity lithium-ion batteries , 2016 .

[33]  D Carlier,et al.  Electrochemical investigation of the P2–NaxCoO2 phase diagram. , 2011, Nature materials.

[34]  Teófilo Rojo,et al.  A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries , 2015 .

[35]  D. A. D. Corte,et al.  Microsized Sn as Advanced Anodes in Glyme‐Based Electrolyte for Na‐Ion Batteries , 2016, Advanced materials.

[36]  B. Lucht,et al.  Effect of Added LiBOB on High Voltage (LiNi0.5Mn1.5O4) Spinel Cathodes , 2011 .

[37]  Shinichi Komaba,et al.  Negative electrodes for Na-ion batteries. , 2014, Physical chemistry chemical physics : PCCP.

[38]  D. Aurbach,et al.  Study of the nanosized Li2MnO3: Electrochemical behavior, structure, magnetic properties, and vibrational modes , 2013 .

[39]  J. Yamaki,et al.  Electrochemical and thermal properties of hard carbon-type anodes for Na-ion batteries , 2013 .

[40]  Chih-Chieh Wang,et al.  Mitigation of layer to spinel conversion of a lithium-rich layered oxide cathode by substitution of Al in a lithium ion battery , 2015 .

[41]  Xiqian Yu,et al.  Identifying the Critical Role of Li Substitution in P2− Na x (Li y Ni z Mn 1−y−z )O 2 (0 < x, y, z < 1) Intercalation Cathode Materials for High-Energy Na-Ion Batteries , 2014 .

[42]  Feng Wu,et al.  Multifunctional AlPO4 coating for improving electrochemical properties of low-cost Li[Li0.2Fe0.1Ni0.15Mn0.55]O2 cathode materials for lithium-ion batteries. , 2015, ACS applied materials & interfaces.

[43]  Philipp Adelhelm,et al.  Room-temperature sodium-ion batteries: Improving the rate capability of carbon anode materials by templating strategies , 2011 .

[44]  T. Fässler,et al.  Revision of the Li–Si Phase Diagram: Discovery and Single-Crystal X-ray Structure Determination of the High-Temperature Phase Li4.11Si , 2013 .

[45]  Ayyakkannu Manivannan,et al.  Carbon coated hollow Na2FePO4F spheres for Na-ion battery cathodes , 2013 .

[46]  A. Busnaina,et al.  Mitigation of Layered to Spinel Conversion of a Li-Rich Layered Metal Oxide Cathode Material for Li-Ion Batteries , 2014 .

[47]  D. Aurbach,et al.  Understanding the influence of Mg doping for the stabilization of capacity and higher discharge voltage of Li- and Mn-rich cathodes for Li-ion batteries. , 2017, Physical chemistry chemical physics : PCCP.

[48]  Hiroyuki Yamaguchi,et al.  Na4Co3(PO4)2P2O7: A novel storage material for sodium-ion batteries , 2013 .

[49]  Jens F. Peters,et al.  Life cycle assessment of sodium-ion batteries , 2016 .

[50]  T. R. Jow,et al.  Rechargeable Electrodes from Sodium Cobalt Bronzes , 1988 .

[51]  J. Tarascon,et al.  Taking steps forward in understanding the electrochemical behavior of Na2Ti3O7 , 2015 .

[52]  R. Ruoff,et al.  Two‐Dimensional Materials for Beyond‐Lithium‐Ion Batteries , 2016 .

[53]  Jean-Marie Tarascon,et al.  Synthesis, Structure, and Electrochemical Properties of the Layered Sodium Insertion Cathode Material: NaNi1/3Mn1/3Co1/3O2 , 2012 .

[54]  D. Bresser,et al.  Embedding tin nanoparticles in micron-sized disordered carbon for lithium- and sodium-ion anodes , 2014 .

[55]  T. Rojo,et al.  Composition and evolution of the solid-electrolyte interphase in Na2Ti3O7 electrodes for Na-ion batteries: XPS and Auger parameter analysis. , 2015, ACS applied materials & interfaces.

[56]  Ray H. Baughman,et al.  Elastomeric and Dynamic MnO2/CNT Core–Shell Structure Coiled Yarn Supercapacitor , 2016 .

[57]  Kai Jiang,et al.  Simultaneously improved capacity and initial coulombic efficiency of Li-rich cathode Li[Li0.2Mn0.54Co0.13Ni0.13]O2 by enlarging crystal cell from a nanoplate precursor , 2016 .

[58]  Linda F Nazar,et al.  The emerging chemistry of sodium ion batteries for electrochemical energy storage. , 2015, Angewandte Chemie.

[59]  Jean-Marie Tarascon,et al.  Reactivity of transition metal (Co, Ni, Cu) sulphides versus lithium: The intriguing case of the copper sulphide , 2006 .

[60]  G. H. Newman,et al.  Ambient Temperature Cycling of an Na ‐ TiS2 Cell , 1980 .

[61]  D. Aurbach,et al.  Electrochemical performance of Na0.6[Li0.2Ni0.2Mn0.6]O2 cathodes with high-working average voltage for Na-ion batteries , 2017 .

[62]  Xueping Gao,et al.  Sn-stabilized Li-rich layered Li(Li0.17Ni0.25Mn0.58)O2 oxide as a cathode for advanced lithium-ion batteries , 2015 .

[63]  M. Miyayama,et al.  Hydrothermal synthesis of LiFePO4 with small particle size and its electrochemical properties , 2010 .

[64]  D. Aurbach,et al.  Improving Energy Density and Structural Stability of Manganese Oxide Cathodes for Na-Ion Batteries by Structural Lithium Substitution , 2016 .

[65]  Philippe Moreau,et al.  Structure and Stability of Sodium Intercalated Phases in Olivine FePO4 , 2010 .

[66]  J. Goodenough,et al.  Eldfellite, NaFe(SO4)2: an intercalation cathode host for low-cost Na-ion batteries , 2015 .

[67]  Y. Idemoto,et al.  Synthesis, structure, and electrochemical Li-ion intercalation properties of Li2Ti3O7 with Na2Ti3O7-type layered structure , 2008 .

[68]  Atsuo Yamada,et al.  Ab initio study of sodium intercalation into disordered carbon , 2015 .

[69]  H. Ache,et al.  Development of Thin Film Electrodes Based on Sputtered Amorphous Carbon , 1997 .

[70]  Dipan Kundu,et al.  Natriumionenbatterien für die elektrochemische Energiespeicherung , 2015 .

[71]  Hideki Nakayama,et al.  First-principles study of alkali metal-graphite intercalation compounds , 2012 .

[72]  D. Aurbach,et al.  Electrochemical and structural characterization of carbon coated Li1.2Mn0.56Ni0.16Co0.08O2 and Li1.2Mn0.6Ni0.2O2 as cathode materials for Li-ion batteries , 2014 .

[73]  Y. Meng,et al.  Understanding Na₂Ti₃O₇ as an ultra-low voltage anode material for a Na-ion battery. , 2014, Chemical communications.

[74]  K. S. Nanjundaswamy,et al.  Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries , 1997 .

[75]  Kristina Edström,et al.  The cathode-electrolyte interface in the Li-ion battery , 2004 .

[76]  Donghan Kim,et al.  Sodium‐Ion Batteries , 2013 .

[77]  P. Adelhelm,et al.  Electrochemical performance of CuNCN for sodium ion batteries and comparison with ZnNCN and lithium ion batteries , 2017 .

[78]  John T. Vaughey,et al.  Li{sub2}MnO{sub3}-stabilized LiMO{sub2} (M=Mn, Ni, Co) electrodes for high energy lithium-ion batteries , 2007 .

[79]  B. Lucht,et al.  Generation of Cathode Passivation Films via Oxidation of Lithium Bis(oxalato) Borate on High Voltage Spinel (LiNi0.5Mn1.5O4) , 2014 .

[80]  Teófilo Rojo,et al.  Na-ion batteries, recent advances and present challenges to become low cost energy storage systems , 2012 .

[81]  Anubhav Jain,et al.  Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials , 2011 .

[82]  Xianyou Wang,et al.  Effects of synthesis conditions on the structural and electrochemical properties of layered Li[Ni1/3Co1/3Mn1/3]O2 cathode material via the hydroxide co-precipitation method LIB SCITECH , 2006 .

[83]  P. Adelhelm,et al.  A comparative study on the impact of different glymes and their derivatives as electrolyte solvents for graphite co-intercalation electrodes in lithium-ion and sodium-ion batteries. , 2016, Physical chemistry chemical physics : PCCP.

[84]  Fredrik J. Lindgren,et al.  Towards more sustainable negative electrodes in Na-ion batteries via nanostructured iron oxide , 2014 .

[85]  Ya‐Xia Yin,et al.  An O3-type NaNi0.5Mn0.5O2 cathode for sodium-ion batteries with improved rate performance and cycling stability , 2016 .

[86]  Akira Yoshino,et al.  The birth of the lithium-ion battery. , 2012, Angewandte Chemie.

[87]  K. Kubota,et al.  Direct synthesis of oxygen-deficient Li2MnO3−x for high capacity lithium battery electrodes , 2012 .

[88]  Liquan Chen,et al.  Room-temperature stationary sodium-ion batteries for large-scale electric energy storage , 2013 .

[89]  Liquan Chen,et al.  The crystal structural evolution of nano-Si anode caused by lithium insertion and extraction at room temperature , 2000 .

[90]  Ying Bai,et al.  AlF3 surface-coated Li[Li0.2 Ni0.17 Co0.07 Mn0.56 ]O2 nanoparticles with superior electrochemical performance for lithium-ion batteries. , 2015, ChemSusChem.

[91]  Jean-Marie Tarascon,et al.  Li2Fe(SO4)2 as a 3.83 V positive electrode material , 2012 .

[92]  S. Komaba,et al.  Electrochemical behavior and structural change of spinel-type Li[LixMn2−x]O4 (x=0 and 0.2) in sodium cells , 2012 .

[93]  Venkat Srinivasan,et al.  Resource constraints on the battery energy storage potential for grid and transportation applications , 2011 .

[94]  Doron Aurbach,et al.  The Study of Surface Phenomena Related to Electrochemical Lithium Intercalation into Li x MO y Host Materials (M = Ni, Mn) , 2000 .

[95]  P. Novák,et al.  The influence of electrolyte and graphite type on the PF 6 - intercalation behaviour at high potentials , 2009 .

[96]  Lingjun Li,et al.  Highly crystalline alumina surface coating from hydrolysis of aluminum isopropoxide on lithium-rich layered oxide , 2015 .

[97]  Jason Graetz,et al.  Conversion reaction mechanisms in lithium ion batteries: study of the binary metal fluoride electrodes. , 2011, Journal of the American Chemical Society.

[98]  S. Ong,et al.  A comparison of destabilization mechanisms of the layered Na(x)MO2 and Li(x)MO2 compounds upon alkali de-intercalation. , 2012, Physical chemistry chemical physics : PCCP.

[99]  Haoshen Zhou,et al.  High stable post-spinel NaMn2O4 cathode of sodium ion battery , 2014 .

[100]  B. Hwang,et al.  Experimental Study on Sodiation of Amorphous Silicon for Use as Sodium-Ion Battery Anode , 2016 .

[101]  Ji-Hoon Lee,et al.  Polythiophene-Wrapped Olivine NaFePO4 as a Cathode for Na-Ion Batteries. , 2016, ACS applied materials & interfaces.

[102]  M. J. McDonald,et al.  Zero-Strain Na2FeSiO4 as Novel Cathode Material for Sodium-Ion Batteries. , 2016, ACS applied materials & interfaces.

[103]  Jens F. Peters,et al.  A Critical Assessment of the Resource Depletion Potential of Current and Future Lithium-Ion Batteries , 2016 .

[104]  Ruibing Yu,et al.  Investigation on the enhanced electrochemical performances of Li1.2Ni0.13Co0.13Mn0.54O2 by surface modification with ZnO , 2015 .

[105]  Fredrik J. Lindgren,et al.  Investigation of the Electrode/Electrolyte Interface of Fe2O3 Composite Electrodes: Li vs Na Batteries , 2014 .

[106]  K. W. Kim,et al.  Electrochemical properties of sodium/pyrite battery at room temperature , 2007 .

[107]  William A. Goddard,et al.  Unexpected discovery of low-cost maricite NaFePO4 as a high-performance electrode for Na-ion batteries , 2015 .

[108]  Y. Orikasa,et al.  Pyrophosphate Na 2 FeP 2 O 7 as a low-cost and high-performance positive electrode material for sodium secondary batteries utilizing an inorganic ionic liquid , 2014 .

[109]  Y. Meng,et al.  Exploring Li substituted O3-structured layered oxides NaLi x Ni 1/3 - X Mn 1/3 + x Co 1/3 - X O 2 (x = 0.07, 0.13, and 0.2) as promising cathode materials for rechargeable Na batteries , 2015 .

[110]  D. Brandell,et al.  Solubility of the Solid Electrolyte Interphase (SEI) in Sodium Ion Batteries , 2016 .

[111]  L. Nazar,et al.  Scalable synthesis of tavorite LiFeSO4F and NaFeSO4F cathode materials. , 2010, Angewandte Chemie.

[112]  P. Moreau,et al.  Elucidation of the Na(2/3)FePO₄ and Li(2/3)FePO₄ intermediate superstructure revealing a pseudouniform ordering in 2D. , 2014, Journal of the American Chemical Society.

[113]  J. Tarascon,et al.  Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries , 2000, Nature.

[114]  Chenglong Zhao,et al.  Recent advances of electrode materials for low-cost sodium-ion batteries towards practical application for grid energy storage , 2017 .

[115]  L. Nazar,et al.  Structure of the high voltage phase of layered P2-Na2/3−z[Mn1/2Fe1/2]O2 and the positive effect of Ni substitution on its stability , 2015 .

[116]  T. Rojo,et al.  Structure of H2Ti3O7 and its evolution during sodium insertion as anode for Na ion batteries. , 2015, Physical chemistry chemical physics : PCCP.

[117]  Yaolin Xu,et al.  Reversible Na‐Ion Uptake in Si Nanoparticles , 2016 .

[118]  D. Bresser,et al.  Unfolding the Mechanism of Sodium Insertion in Anatase TiO2 Nanoparticles , 2015 .

[119]  Arumugam Manthiram,et al.  Microwave-Solvothermal Synthesis of Nanostructured Li2MSiO4/C (M = Mn and Fe) Cathodes for Lithium-Ion Batteries , 2010 .

[120]  G. Ceder,et al.  Jahn − Teller Assisted Na Di ff usion for High Performance Na Ion Batteries , 2016 .

[121]  B. Nykvist,et al.  Rapidly falling costs of battery packs for electric vehicles , 2015 .

[122]  S. Jung,et al.  Origin of excellent rate and cycle performance of Na+-solvent cointercalated graphite vs. poor performance of Li+-solvent case , 2017 .

[123]  Hyunchul Kim,et al.  Sodium intercalation chemistry in graphite , 2015 .

[124]  Jing Li,et al.  An In Situ X-Ray Diffraction Study of the Reaction of Li with Crystalline Si , 2007 .

[125]  Martin Winter,et al.  Electrochemical lithiation of tin and tin-based intermetallics and composites , 1999 .

[126]  D. Qu,et al.  Facile Synthesis of Platelike Hierarchical Li1.2Mn0.54Ni0.13Co0.13O2 with Exposed {010} Planes for High-Rate and Long Cycling-Stable Lithium Ion Batteries. , 2016, ACS applied materials & interfaces.

[127]  Shinichi Komaba,et al.  Research development on sodium-ion batteries. , 2014, Chemical reviews.

[128]  G. Blomgren The development and future of lithium ion batteries , 2017 .

[129]  Yan Huang,et al.  Synthesize and electrochemical characterization of Mg-doped Li-rich layered Li[Li0.2Ni0.2Mn0.6]O2 cathode material , 2013 .

[130]  Gerbrand Ceder,et al.  Electrode Materials for Rechargeable Sodium‐Ion Batteries: Potential Alternatives to Current Lithium‐Ion Batteries , 2012 .

[131]  K. Abraham Intercalation positive electrodes for rechargeable sodium cells , 1982 .

[132]  Philipp Adelhelm,et al.  Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena. , 2014, Angewandte Chemie.

[133]  A. Yamada,et al.  Electrode Properties of P2–Na2/3MnyCo1–yO2 as Cathode Materials for Sodium-Ion Batteries , 2013 .

[134]  K. Kang,et al.  Sodium Storage Behavior in Natural Graphite using Ether‐based Electrolyte Systems , 2015 .

[135]  Y. Takeda,et al.  Synthesis, Structure, and Electrochemical Properties of a New Lithium Iron Oxide, LiFeO2, with a Corrugated Layer Structure , 1996 .

[136]  Yun Jung Lee,et al.  Cobalt-free nickel rich layered oxide cathodes for lithium-ion batteries. , 2013, ACS applied materials & interfaces.

[137]  Akira Yoshino,et al.  Die Geburt der Lithiumionen‐Batterie , 2012 .

[138]  Junyang Li,et al.  Synthesis, crystal structure and electrochemical properties of LiFePO4F cathode material for Li-ion batteries , 2014 .

[139]  Shinichi Komaba,et al.  Electrochemical intercalation activity of layered NaCrO2 vs. LiCrO2 , 2010 .

[140]  J. Gim,et al.  Fully activated Li2MnO3 nanoparticles by oxidation reaction , 2012 .

[141]  Kai Zhang,et al.  Recent Advances and Prospects of Cathode Materials for Sodium‐Ion Batteries , 2015, Advanced materials.

[142]  Philipp Adelhelm,et al.  From lithium to sodium: cell chemistry of room temperature sodium–air and sodium–sulfur batteries , 2015, Beilstein journal of nanotechnology.

[143]  Hiroshi Nakamura,et al.  Electrochemical Activities in Li2MnO3 , 2009 .

[144]  M. R. Palacín,et al.  Review-Hard Carbon Negative Electrode Materials for Sodium-Ion Batteries , 2015 .

[145]  A. Michaelis,et al.  In-situ preparation and electrochemical characterization of submicron sized NaFePO4 cathode material for sodium-ion batteries , 2017 .

[146]  P. Kumta,et al.  Tin and graphite based nanocomposites: Potential anode for sodium ion batteries , 2013 .

[147]  P. Adelhelm,et al.  Cell Concepts of Metal–Sulfur Batteries (Metal = Li, Na, K, Mg): Strategies for Using Sulfur in Energy Storage Applications , 2017, Topics in current chemistry.

[148]  S. Jung,et al.  Atom-Level Understanding of the Sodiation Process in Silicon Anode Material. , 2014, The journal of physical chemistry letters.

[149]  J. Cabana,et al.  Beyond Intercalation‐Based Li‐Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions , 2010, Advanced materials.

[150]  Jung-Ki Park Principles and Applications of Lithium Secondary Batteries: PARK:LI BATTERIES O-BK , 2012 .

[151]  Laure Monconduit,et al.  Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: an unexpected electrochemical mechanism. , 2012, Journal of the American Chemical Society.

[152]  J. Tarascon,et al.  Rationalization of Intercalation Potential and Redox Mechanism for A2Ti3O7 (A = Li, Na) , 2013 .

[153]  Juchuan Li,et al.  Whisker formation on a thin film tin lithium-ion battery anode , 2011 .

[154]  A. Yamada,et al.  Phase Diagram of Olivine NaxFePO4 (0 < x < 1) , 2013 .

[155]  J. Janek,et al.  Kinetics and Degradation Processes of CuO as Conversion Electrode for Sodium-Ion Batteries: An Electrochemical Study Combined with Pressure Monitoring and DEMS , 2017 .

[156]  Shin-ichi Nishimura,et al.  High‐Voltage Pyrophosphate Cathodes , 2012 .

[157]  Haoshen Zhou,et al.  Recent advances in titanium-based electrode materials for stationary sodium-ion batteries , 2016 .

[158]  Yuki Yamada,et al.  Theoretical Analysis on De-Solvation of Lithium, Sodium, and Magnesium Cations to Organic Electrolyte Solvents , 2013 .

[159]  Chunsheng Wang,et al.  Electrochemical Performance of Porous Carbon/Tin Composite Anodes for Sodium‐Ion and Lithium‐Ion Batteries , 2013 .

[160]  P. Adelhelm,et al.  Copper sulfides for rechargeable lithium batteries: Linking cycling stability to electrolyte composition , 2014 .

[161]  Linghui Yu,et al.  Hollow Carbon Nanospheres with Superior Rate Capability for Sodium‐Based Batteries , 2012 .

[162]  D. Aurbach,et al.  TEM and Raman spectroscopy evidence of layered to spinel phase transformation in layered LiNi1/3Mn1/3Co1/3O2 upon cycling to higher voltages , 2014 .

[163]  M. Winter,et al.  X-ray diffraction studies of the electrochemical intercalation of bis(trifluoromethanesulfonyl)imide anions into graphite for dual-ion cells , 2013 .

[164]  Qi Li,et al.  K(+)-doped Li(1.2)Mn(0.54)Co(0.13)Ni(0.13)O2: a novel cathode material with an enhanced cycling stability for lithium-ion batteries. , 2014, ACS applied materials & interfaces.

[165]  Y. Meng,et al.  An advanced cathode for Na-ion batteries with high rate and excellent structural stability. , 2013, Physical chemistry chemical physics : PCCP.

[166]  Philipp Adelhelm,et al.  Conversion reactions for sodium-ion batteries. , 2013, Physical chemistry chemical physics : PCCP.

[167]  W. Luo,et al.  Na-Ion Battery Anodes: Materials and Electrochemistry. , 2016, Accounts of chemical research.

[168]  Kazuma Gotoh,et al.  Electrochemical Na Insertion and Solid Electrolyte Interphase for Hard‐Carbon Electrodes and Application to Na‐Ion Batteries , 2011 .

[169]  Haijun Yu,et al.  High-Energy Cathode Materials (Li2MnO3-LiMO2) for Lithium-Ion Batteries. , 2013, The journal of physical chemistry letters.