An Experimental Study on the Performance of Savonius Wind Turbines Related With The Number Of Blades

Abstract Wind energy is the most abundantly available clean form of renewable energy in the earth crust. Wind turbines produce electricity by using the power of wind to drive an electric generator. There are two kinds of wind turbines according to the axis of rotation to the ground, horizontal axis wind turbines (HAWT) and vertical axis wind turbines (VAWT). VAWTs include both a drag type configuration like Savonius wind turbine and a lift-type configuration like Darrieus wind turbine. Savonius wind rotor has many advantages over others in that its construction is simpler and cheaper. It is independent of the wind direction and has a good starting torque at lower wind speeds. The experimental study conducted in this paper aims to investigate the effect of number of blades on the performance of the model of Savonius type wind turbine. The experiments used to compare 2, 3, and 4 blades wind turbines to show tip speed ratio, torque and power coefficient related with wind speed. A simulation using ANSYS 13.0 software will show pressure distribution of wind turbine. The results of study showed that number of blades influence the performance of wind turbine. Savonius model with three blades has the best performance at high tip speed ratio. The highest tip speed ratio is 0.555 for wind speed of 7 m/s.