Photoluminescent Metal–Organic Frameworks for Gas Sensing

Luminescence of porous coordination polymers (PCPs) or metal–organic frameworks (MOFs) is sensitive to the type and concentration of chemical species in the surrounding environment, because these materials combine the advantages of the highly regular porous structures and various luminescence mechanisms, as well as diversified host‐guest interactions. In the past few years, luminescent MOFs have attracted more and more attention for chemical sensing of gas‐phase analytes, including common gases and vapors of solids/liquids. While liquid‐phase and gas‐phase luminescence sensing by MOFs share similar mechanisms such as host‐guest electron and/or energy transfer, exiplex formation, and guest‐perturbing of excited‐state energy level and radiation pathways, via various types of host‐guest interactions, gas‐phase sensing has its unique advantages and challenges, such as easy utilization of encapsulated guest luminophores and difficulty for accurate measurement of the intensity change. This review summarizes recent progresses by using luminescent MOFs as reusable sensing materials for detection of gases and vapors of solids/liquids especially for O2, highlighting various strategies for improving the sensitivity, selectivity, stability, and accuracy, reducing the materials cost, and developing related devices.

[1]  S. Petoud,et al.  Zinc-adeninate metal-organic framework for aqueous encapsulation and sensitization of near-infrared and visible emitting lanthanide cations. , 2011, Journal of the American Chemical Society.

[2]  Donghui Yang,et al.  Flexible Metal–Organic Frameworks: Recent Advances and Potential Applications , 2015, Advanced materials.

[3]  Qiang Wang,et al.  Direct visualization of a guest-triggered crystal deformation based on a flexible ultramicroporous framework , 2013, Nature Communications.

[4]  S. Ng,,et al.  Luminescent metal-organic frameworks (MOFs) as a chemopalette: tuning the thermochromic behavior of dual-emissive phosphorescence by adjusting the supramolecular microenvironments. , 2013, Chemistry.

[5]  Rui‐Biao Lin,et al.  Porous Cu(I) Triazolate Framework and Derived Hybrid Membrane with Exceptionally High Sensing Efficiency for Gaseous Oxygen , 2014 .

[6]  Yanfeng Yue,et al.  Luminescent functional metal-organic frameworks. , 2012, Chemical Reviews.

[7]  Rui‐Biao Lin,et al.  Single-crystal X-ray diffraction studies on structural transformations of porous coordination polymers. , 2014, Chemical Society reviews.

[8]  Michael O'Keeffe,et al.  Secondary building units, nets and bonding in the chemistry of metal-organic frameworks. , 2009, Chemical Society reviews.

[9]  Zhigang Xie,et al.  Porous phosphorescent coordination polymers for oxygen sensing. , 2010, Journal of the American Chemical Society.

[10]  K. Müller‐Buschbaum,et al.  MOF based luminescence tuning and chemical/physical sensing , 2015 .

[11]  Omar K Farha,et al.  Metal-organic framework materials as catalysts. , 2009, Chemical Society reviews.

[12]  R. Fischer,et al.  Metal-organic framework thin films: from fundamentals to applications. , 2012, Chemical reviews.

[13]  Bharathibai J. Basu,et al.  Comparison of the oxygen sensor performance of some pyrene derivatives in silicone polymer matrix , 2004 .

[14]  Li Zhang,et al.  Applications of metal-organic frameworks in heterogeneous supramolecular catalysis. , 2014, Chemical Society reviews.

[15]  Jie‐Peng Zhang,et al.  A flexible metal azolate framework with drastic luminescence response toward solvent vapors and carbon dioxide , 2011 .

[16]  B. Valeur,et al.  Molecular Fluorescence: Principles and Applications , 2001 .

[17]  Aamod V. Desai,et al.  Stimulus-responsive metal-organic frameworks. , 2014, Chemistry, an Asian journal.

[18]  Jun-Hao Wang,et al.  A dual-emitting Cu6-Cu2-Cu6 cluster as a self-calibrated, wide-range luminescent molecular thermometer. , 2014, Chemical communications.

[19]  Ilich A. Ibarra,et al.  Molecular sensing and discrimination by a luminescent terbium-phosphine oxide coordination material. , 2013, Chemical communications.

[20]  Peter R Ogilby,et al.  Singlet oxygen: there is indeed something new under the sun. , 2010, Chemical Society reviews.

[21]  S. Chong,et al.  A guest-responsive fluorescent 3D microporous metal-organic framework derived from a long-lifetime pyrene core. , 2010, Journal of the American Chemical Society.

[22]  Dan Li,et al.  Copper(I) halides: A versatile family in coordination chemistry and crystal engineering , 2010 .

[23]  A. J. Blake,et al.  A partially interpenetrated metal-organic framework for selective hysteretic sorption of carbon dioxide. , 2012, Nature materials.

[24]  Weisheng Liu,et al.  Lanthanide coordination polymers and their Ag+-modulated fluorescence. , 2004, Journal of the American Chemical Society.

[25]  Bin Zhao,et al.  Coordination polymers containing 1D channels as selective luminescent probes. , 2004, Journal of the American Chemical Society.

[26]  Lei Wang,et al.  Dynamically controlled one-pot synthesis of heterogeneous core-shell MOF single crystals using guest molecules. , 2014, Chemical communications.

[27]  Zhongshang Dou,et al.  Preparation and thiols sensing of luminescent metal–organic framework films functionalized with lanthanide ions , 2013 .

[28]  Vonika Ka-Man Au,et al.  Light-Emitting Self-Assembled Materials Based on d(8) and d(10) Transition Metal Complexes. , 2015, Chemical reviews.

[29]  S. M. F. Vilela,et al.  Multifunctional metal-organic frameworks: from academia to industrial applications. , 2015, Chemical Society Reviews.

[30]  Xiaoying Huang,et al.  A magnesium MOF as a sensitive fluorescence sensor for CS2 and nitroaromatic compounds , 2014 .

[31]  Bharathibai J. Basu,et al.  Optical oxygen sensor coating based on the fluorescence quenching of a new pyrene derivative , 2005 .

[32]  Jun-Hao Wang,et al.  A dynamic, luminescent and entangled MOF as a qualitative sensor for volatile organic solvents and a quantitative monitor for acetonitrile vapour , 2013 .

[33]  Zhenjie Zhang,et al.  Template-directed synthesis of metal-organic materials. , 2014, Chemical Society reviews.

[34]  Chengyi Zhang,et al.  Fluorescent nanoscale zinc(II)-carboxylate coordination polymers for explosive sensing. , 2011, Chemical communications.

[35]  Jeffrey R. Long,et al.  Evaluating metal–organic frameworks for natural gas storage , 2014 .

[36]  H. S. Wolff,et al.  iRun: Horizontal and Vertical Shape of a Region-Based Graph Compression , 2022, Sensors.

[37]  Sanjaya D. Perera,et al.  Fabrication of oriented silver-functionalized RPM3 films for the selective detection of olefins. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[38]  Chun He,et al.  Tuning oxygen-sensing behaviour of a porous coordination framework by a guest fluorophore , 2015 .

[39]  Craig M. Brown,et al.  Methane storage in flexible metal–organic frameworks with intrinsic thermal management , 2015, Nature.

[40]  Jianping Ma,et al.  Cu(I)-MOF: naked-eye colorimetric sensor for humidity and formaldehyde in single-crystal-to-single-crystal fashion. , 2014, Chemical communications.

[41]  Pei‐Qin Liao,et al.  Phosphorescence doping in a flexible ultramicroporous framework for high and tunable oxygen sensing efficiency. , 2013, Chemical communications.

[42]  M. Zeller,et al.  Convenient detection of Pd(II) by a metal-organic framework with sulfur and olefin functions. , 2013, Journal of the American Chemical Society.

[43]  H. Sheu,et al.  Synthesis, structure and oxygen-sensing properties of iridium(III)-containing coordination polymers with different cations. , 2012, Dalton transactions.

[44]  Wei‐Yin Sun,et al.  Solvent-dependent zinc(II) coordination polymers with mixed ligands: selective sorption and fluorescence sensing. , 2015, Dalton transactions.

[45]  P. Mukherjee,et al.  Modification of extended open frameworks with fluorescent tags for sensing explosives: competition between size selectivity and electron deficiency. , 2014, Chemistry.

[46]  S. Kitagawa,et al.  Soft porous crystals. , 2009, Nature chemistry.

[47]  T. Lu,et al.  Fast detection of oxygen by the naked eye using a stable metal-organic framework containing methyl viologen cations. , 2013, Chemical communications.

[48]  Shu-quan Zhang,et al.  Dynamic entangled framework based on an iridium-organic unit showing reversible luminescence turn-on sensing. , 2015, Inorganic chemistry.

[49]  A. Zurawski,et al.  A blue luminescent MOF as a rapid turn-off/turn-on detector for H2O, O2 and CH2Cl2, MeCN: ∞³[Ce(Im)3ImH]·ImH. , 2015, Dalton transactions.

[50]  C. Zheng,et al.  New microporous metal-organic framework demonstrating unique selectivity for detection of high explosives and aromatic compounds. , 2011, Journal of the American Chemical Society.

[51]  Sebastian Reineke,et al.  Selective turn-on ammonia sensing enabled by high-temperature fluorescence in metal-organic frameworks with open metal sites. , 2013, Journal of the American Chemical Society.

[52]  M. DeRosa Photosensitized singlet oxygen and its applications , 2002 .

[53]  Yuanjing Cui,et al.  A highly sensitive mixed lanthanide metal-organic framework self-calibrated luminescent thermometer. , 2013, Journal of the American Chemical Society.

[54]  Dmitri B Papkovsky,et al.  Biological detection by optical oxygen sensing. , 2013, Chemical Society reviews.

[55]  Cheng Wang,et al.  Oxygen sensing via phosphorescence quenching of doped metal–organic frameworks , 2012 .

[56]  Xiaoling Zhang,et al.  Luminescent Metal‐Organic Frameworks for Selectively Sensing Nitric Oxide in an Aqueous Solution and in Living Cells , 2012 .

[57]  S. Qiu,et al.  Metal-organic framework membranes: from synthesis to separation application. , 2014, Chemical Society reviews.

[58]  X. Bu,et al.  A luminescent metal–organic framework demonstrating ideal detection ability for nitroaromatic explosives , 2014 .

[59]  K. Müller‐Buschbaum,et al.  Engineering metal-based luminescence in coordination polymers and metal-organic frameworks. , 2013, Chemical Society reviews.

[60]  Vivian Wing-Wah Yam,et al.  Luminescent cation sensors: from host-guest chemistry, supramolecular chemistry to reaction-based mechanisms. , 2015, Chemical Society reviews.

[61]  Wei‐Xiong Zhang,et al.  Self-catalysed aerobic oxidization of organic linker in porous crystal for on-demand regulation of sorption behaviours , 2015, Nature Communications.

[62]  M. Allendorf,et al.  Luminescent metal-organic frameworks. , 2009, Chemical Society reviews.

[63]  Svetlana Mintova,et al.  Gas sensing using porous materials for automotive applications. , 2015, Chemical Society reviews.

[64]  Fuyou Li,et al.  Phosphorescent chemosensors based on heavy-metal complexes. , 2010, Chemical Society reviews.

[65]  M. Ho,et al.  Electrochemical synthesis, characterization of Ir-Zn containing coordination polymer, and application in oxygen and glucose sensing. , 2014, Dalton transactions.

[66]  A. Corma,et al.  A miniaturized linear pH sensor based on a highly photoluminescent self-assembled europium(III) metal-organic framework. , 2009, Angewandte Chemie.

[67]  J. Holliday Sun , 1995 .

[68]  Chen-Ho Tung,et al.  Design strategies of fluorescent probes for selective detection among biothiols. , 2015, Chemical Society reviews.

[69]  Juyoung Yoon,et al.  Recent Progress on the Development of Chemosensors for Gases. , 2015, Chemical reviews.

[70]  David Parker,et al.  Luminescent lanthanide sensors for pH, pO2 and selected anions , 2000 .

[71]  Hong-Cai Zhou,et al.  Methane storage in advanced porous materials. , 2012, Chemical Society reviews.

[72]  Yves J. Chabal,et al.  Selective detection of olefins using a luminescent silver-functionalized metal organic framework, RPM3 , 2013 .

[73]  Michael O’Keeffe,et al.  The Chemistry and Applications of Metal-Organic Frameworks , 2013, Science.

[74]  G. Shimizu,et al.  MOFs as proton conductors--challenges and opportunities. , 2014, Chemical Society reviews.

[75]  D. Banerjee,et al.  Vapor phase detection of nitroaromatic and nitroaliphatic explosives by fluorescence active metal–organic frameworks , 2013 .

[76]  Lei Hou,et al.  Porous metal-organic framework based on mu4-oxo tetrazinc clusters: sorption and guest-dependent luminescent properties. , 2008, Inorganic chemistry.

[77]  Yu Yang,et al.  Luminescent Open Metal Sites within a Metal–Organic Framework for Sensing Small Molecules , 2007 .

[78]  Yue‐Biao Zhang,et al.  Metal azolate frameworks: from crystal engineering to functional materials. , 2012, Chemical reviews.

[79]  M. Ho,et al.  Four new lead(II)–iridium(III) heterobimetallic coordination frameworks: synthesis, structures, luminescence and oxygen-sensing properties , 2015 .

[80]  Chao Zou,et al.  A luminescent dye@MOF platform: emission fingerprint relationships of volatile organic molecules. , 2014, Angewandte Chemie.

[81]  Yuanjing Cui,et al.  A luminescent metal-organic framework with Lewis basic pyridyl sites for the sensing of metal ions. , 2009, Angewandte Chemie.

[82]  A. Teleki,et al.  Semiconductor gas sensors: dry synthesis and application. , 2010, Angewandte Chemie.

[83]  Jiao-Min Lin,et al.  Structural, energetic, and dynamic insights into the abnormal xylene separation behavior of hierarchical porous crystal , 2015, Scientific Reports.

[84]  S. Kitagawa,et al.  Sequential functionalization of porous coordination polymer crystals. , 2011, Angewandte Chemie.

[85]  Mitchell A. Winnik,et al.  Luminescence Quenching in Polymer/Filler Nanocomposite Films Used in Oxygen Sensors , 2001 .

[86]  Lehui Lu,et al.  A new type of nanoscale coordination particles: toward modification-free detection of hydrogen sulfide gas , 2012 .

[87]  Jian Zhang,et al.  Luminescent MTN-type cluster-organic framework with 2.6 nm cages. , 2012, Journal of the American Chemical Society.

[88]  O. Wolfbeis,et al.  Optical methods for sensing and imaging oxygen: materials, spectroscopies and applications. , 2014, Chemical Society reviews.

[89]  D. Song,et al.  A luminescent metal-organic framework as a turn-on sensor for DMF vapor. , 2013, Angewandte Chemie.

[90]  Zhiyu Wang,et al.  Luminescent metal-organic framework films as highly sensitive and fast-response oxygen sensors. , 2014, Journal of the American Chemical Society.

[91]  Tu Lee,et al.  A Biomimetic Nose by Microcrystals and Oriented Films of Luminescent Porous Metal–Organic Frameworks , 2011 .

[92]  Bin Tan,et al.  Ammonia detection by using flexible Lewis acidic sites in luminescent porous frameworks constructed from a bipyridinium derivative. , 2015, Chemical communications.

[93]  Christopher Poon,et al.  Metal-organic frameworks as sensory materials and imaging agents. , 2014, Inorganic chemistry.

[94]  T. Uemura,et al.  Gas detection by structural variations of fluorescent guest molecules in a flexible porous coordination polymer. , 2011, Nature materials.

[95]  S. Kitagawa,et al.  Structuring of metal-organic frameworks at the mesoscopic/macroscopic scale. , 2014, Chemical Society reviews.

[96]  F. Kapteijn,et al.  Highly Selective Chemical Sensing in a Luminescent Nanoporous Magnet , 2012, Advanced materials.

[97]  Colette McDonagh,et al.  Optical chemical sensors. , 2008, Chemical reviews.

[98]  Fang Li,et al.  Metal-ion controlled solid-state reactivity and photoluminescence in two isomorphous coordination polymers , 2014 .

[99]  Soumya Mukherjee,et al.  Highly selective detection of nitro explosives by a luminescent metal-organic framework. , 2013, Angewandte Chemie.

[100]  Wei‐Xiong Zhang,et al.  Metal Cluster-Based Functional Porous Coordination Polymers , 2015 .

[101]  J. Scaiano,et al.  Oxygen Quenching of Excited Aliphatic Ketones and Diketones , 1996 .

[102]  Andreas Winter,et al.  Recent Developments in the Application of Phosphorescent Iridium(III) Complex Systems , 2009 .

[103]  V. Yam,et al.  Luminescent gold(I) complexes for chemosensing , 2011 .

[104]  Gérard Férey,et al.  Metal-organic frameworks in biomedicine. , 2012, Chemical reviews.

[105]  Coordination polymers for energy transfer: Preparations, properties, sensing applications, and perspectives , 2015 .

[106]  Kimoon Kim,et al.  Homochiral metal-organic frameworks for asymmetric heterogeneous catalysis. , 2012, Chemical reviews.

[107]  O. Wenger,et al.  Vapochromism in organometallic and coordination complexes: chemical sensors for volatile organic compounds. , 2013, Chemical reviews.

[108]  Xiangge Zhou,et al.  Ratiometric optical oxygen sensing: a review in respect of material design. , 2012, The Analyst.

[109]  R. Battino,et al.  The Solubility of Oxygen and Ozone in Liquids , 1983 .

[110]  A. Corma,et al.  Metal-organic nanoporous structures with anisotropic photoluminescence and magnetic properties and their use as sensors. , 2008, Angewandte Chemie.

[111]  Jing Li,et al.  Luminescent metal-organic frameworks as explosive sensors. , 2014, Dalton transactions.

[112]  Omar K Farha,et al.  Metal-organic framework materials as chemical sensors. , 2012, Chemical reviews.

[113]  C. Zheng,et al.  A systematic study of fluorescence-based detection of nitroexplosives and other aromatics in the vapor phase by microporous metal-organic frameworks. , 2013, Chemistry.

[114]  Jie‐Peng Zhang,et al.  Optimized acetylene/carbon dioxide sorption in a dynamic porous crystal. , 2009, Journal of the American Chemical Society.

[115]  Massimo Guardigli,et al.  Luminescent lanthanide complexes as photochemical supramolecular devices , 1993 .

[116]  Reinhard Schmidt,et al.  Physical mechanisms of generation and deactivation of singlet oxygen. , 2003, Chemical reviews.

[117]  Andrew Mills,et al.  Controlling the sensitivity of optical oxygen sensors , 1998 .

[118]  Jing Li,et al.  Luminescent metal-organic frameworks for chemical sensing and explosive detection. , 2014, Chemical Society reviews.

[119]  Rajamani Krishna,et al.  Separation of Hexane Isomers in a Metal-Organic Framework with Triangular Channels , 2013, Science.

[120]  Y. Chabal,et al.  Selective, Sensitive, and Reversible Detection of Vapor-Phase High Explosives via Two-Dimensional Mapping: A New Strategy for MOF-Based Sensors , 2013 .

[121]  S. Kitagawa,et al.  Molecular decoding using luminescence from an entangled porous framework , 2011, Nature Communications.

[122]  Cheryl Surman,et al.  Materials and transducers toward selective wireless gas sensing. , 2011, Chemical reviews.

[123]  D. Olson,et al.  A luminescent microporous metal-organic framework for the fast and reversible detection of high explosives. , 2009, Angewandte Chemie.

[124]  Qiang Xu,et al.  Non-, micro-, and mesoporous metal-organic framework isomers: reversible transformation, fluorescence sensing, and large molecule separation. , 2010, Journal of the American Chemical Society.

[125]  Jianping Ma,et al.  Luminescent humidity sensors based on porous Ln3+-MOFs , 2012 .

[126]  Xiao-Ming Chen,et al.  A noble-metal-free porous coordination framework with exceptional sensing efficiency for oxygen. , 2013, Angewandte Chemie.

[127]  Kai-Jie Chen,et al.  Turning on the flexibility of isoreticular porous coordination frameworks for drastically tunable framework breathing and thermal expansion , 2013 .

[128]  S. Qiu,et al.  Mesoporous metal-organic framework with rare etb topology for hydrogen storage and dye assembly. , 2007, Angewandte Chemie.

[129]  P. Chou,et al.  A new coordination polymer exhibiting unique 2D hydrogen-bonded (H2O)16 ring formation and water-dependent luminescence properties. , 2011, Chemistry.

[130]  L. Christophorou Science , 2018, Emerging Dynamics: Science, Energy, Society and Values.

[131]  Kyriakos C. Stylianou,et al.  Shape Selectivity by Guest-Driven Restructuring of a Porous Material , 2014, Angewandte Chemie.

[132]  Qiang Zhang,et al.  Tuning the structure and function of metal-organic frameworks via linker design. , 2014, Chemical Society reviews.

[133]  Keiji Nakagawa,et al.  Solid solutions of soft porous coordination polymers: fine-tuning of gas adsorption properties. , 2010, Angewandte Chemie.

[134]  Yuanjing Cui,et al.  Lanthanide metal-organic frameworks for luminescent sensing and light-emitting applications , 2014 .

[135]  K. Rajam,et al.  Study of the diffusion of pyrene in silicone polymer coatings by steady state fluorescence technique: effects of pyrene concentration , 2004 .

[136]  Y. Lan,et al.  An ultrastable porous metal–organic framework luminescent switch towards aromatic compounds , 2015 .

[137]  Rajamani Krishna,et al.  Hydrocarbon Separations in a Metal-Organic Framework with Open Iron(II) Coordination Sites , 2012, Science.

[138]  M. P. Suh,et al.  Multifunctionality and crystal dynamics of a highly stable, porous metal-organic framework [Zn4O(NTB)2]. , 2005, Journal of the American Chemical Society.

[139]  Jie‐Peng Zhang,et al.  Encapsulating Pyrene in a Metal–Organic Zeolite for Optical Sensing of Molecular Oxygen , 2015 .

[140]  C. Doherty,et al.  MOF positioning technology and device fabrication. , 2014, Chemical Society reviews.

[141]  Y. Chabal,et al.  Effective sensing of RDX via instant and selective detection of ketone vapors , 2014 .

[142]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[143]  Lichun Zhang,et al.  A Y-doped metal-organic framework-based cataluminescence gas sensor for isobutanol , 2014 .

[144]  Xiao-Ming Chen,et al.  Supramolecular-jack-like guest in ultramicroporous crystal for exceptional thermal expansion behaviour , 2015, Nature Communications.

[145]  G. Qian,et al.  Methane storage in metal-organic frameworks. , 2014, Chemical Society reviews.

[146]  Sheikh A. Akbar,et al.  Gas Sensors Based on One Dimensional Nanostructured Metal-Oxides: A Review , 2012, Sensors.

[147]  Cheng Wang,et al.  Metal-organic frameworks as a tunable platform for designing functional molecular materials. , 2013, Journal of the American Chemical Society.

[148]  Dawei Feng,et al.  An exceptionally stable, porphyrinic Zr metal-organic framework exhibiting pH-dependent fluorescence. , 2013, Journal of the American Chemical Society.

[149]  Luís D. Carlos,et al.  Luminescent multifunctional lanthanides-based metal-organic frameworks. , 2011, Chemical Society reviews.

[150]  Jie‐Peng Zhang,et al.  A zeolite-like zinc triazolate framework with high gas adsorption and separation performance. , 2012, Inorganic chemistry.