On Semidirect and Two-Sided Semidirect Products of Finite J-Trivial Monoids

In this paper, using results of Almeida and Weil, we give criteria for the semidirect or two-sided semidirect product of two locally finite pseudovarieties V and W to satisfy an identity u = v. We illustrate these criteria with various semidirect and two-sided semidirect products of pseudovarieties of f-trivial monoids. In particular, let J 1 denote the class of all finite semilattice monoids and let W i be the sequence of pseudovarieties of monoids defined by W 1 = J 1 and W i +1 = J 1 * * W 2 (the two-sided semidirect product of J 1 by W 2 ). Each W k turns out to be perfectly related to the k-move standard Ehrenfeucht-Fraisse game. The union U k>1 W k is then the class A of all finite aperiodic monoids.

[1]  Francine Blanchet-Sadri,et al.  On dot-depth two , 1990, RAIRO Theor. Informatics Appl..

[2]  Howard Straubing,et al.  FINITE SEMIGROUP VARIETIES OF THE FORM V,D , 1985 .

[3]  John Rhodes,et al.  The kernel of monoid morphisms , 1989 .

[4]  Jorge Almeida Semidirect products of pseudovarieties from the universal algebraist's point of view , 1989 .

[5]  Wolfgang Thomas,et al.  Classifying Regular Events in Symbolic Logic , 1982, J. Comput. Syst. Sci..

[6]  A. Ehrenfeucht An application of games to the completeness problem for formalized theories , 1961 .

[7]  Wolfgang Thomas An application of the Ehrenfeucht-Fraisse game in formal language theory , 1984 .

[8]  Imre Simon,et al.  Piecewise testable events , 1975, Automata Theory and Formal Languages.

[9]  Francine Blanchet-Sadri,et al.  On a complete set of generators for dot-depth two , 1994, Discret. Appl. Math..

[10]  Bernhard Banaschewski,et al.  The Birkhoff Theorem for varieties of finite algebras , 1983 .

[11]  Jean-Éric Pin Hiérarchies de Concaténation , 1984, RAIRO Theor. Informatics Appl..

[12]  Francine Blanchet-Sadri,et al.  Games, Equations and Dot-Depth Two Monoids , 1992, Discret. Appl. Math..

[13]  Howard Straubing,et al.  On a Conjecture Concerning Dot-Depth Two Languages , 1992, Theor. Comput. Sci..

[14]  Francine Blanchet-Sadri,et al.  Some Logical Characterizations of the Dot-Depth Hierarchy and Applications , 1995, J. Comput. Syst. Sci..

[15]  Stanley Burris,et al.  A course in universal algebra , 1981, Graduate texts in mathematics.

[16]  Francine Blanchet-Sadri Equations on the Semidirect Product of a Finite Semilattice by a J-Trivial Monoid of Height k , 1995, RAIRO Theor. Informatics Appl..

[17]  Janusz A. Brzozowski,et al.  The Dot-Depth Hierarchy of Star-Free Languages is Infinite , 1978, J. Comput. Syst. Sci..

[18]  Samuel Eilenberg Automata, Languages and Machines, Vol. B , 1976 .

[19]  Jan Reiterman,et al.  The Birkhoff theorem for finite algebras , 1982 .

[20]  Bret Tilson,et al.  Categories as algebra: An essential ingredient in the theory of monoids , 1987 .

[21]  Price E. Stiffler,et al.  Chapter 1. Extension of the fundamental theorem of finite semigroups , 1973 .

[22]  Dominique Perrin,et al.  First-Order Logic and Star-Free Sets , 1986, J. Comput. Syst. Sci..

[23]  Francine Blanchet-Sadri,et al.  Equations and Monoid Varieties of Dot-Depth One and Two , 1994, Theor. Comput. Sci..

[24]  Francine Blanchet-Sadri,et al.  Games, equations and the dot-depth hierarchy , 1989 .

[25]  Francine Blanchet-Sadri The Dot-Depth of a Generating Class of Aperiodic Monoids is Computable , 1992, Int. J. Found. Comput. Sci..

[26]  Janusz A. Brzozowski,et al.  Dot-Depth of Star-Free Events , 1971, Journal of computer and system sciences (Print).

[27]  Faith Ellen,et al.  Languages of R-Trivial Monoids , 1980, J. Comput. Syst. Sci..

[28]  F. Blanchet-Sadri,et al.  Equations on the semidirect product of a finite semilattice by a finite commutative monoid , 1994 .

[29]  J. Almeida On iterated semidirect products of finite semilattices , 1991 .

[30]  F. Blanchet-Sadri,et al.  Equations and dot-depth one , 1993 .

[31]  Pascal Weil,et al.  Closure of Varieties of Languages under Products with Counter , 1992, J. Comput. Syst. Sci..

[32]  Christine Irastorza Base non finie de varietes , 1985, STACS.

[33]  Jean-Eric Pin,et al.  On semioirect products of two finite semilattices , 1984 .

[34]  Francine Blanchet-Sadri,et al.  Inclusion Relations Between Some Congruences Related to the Dot-depth Hierarchy , 1996, Discret. Appl. Math..

[35]  John L. Rhodes,et al.  Undecidability of the identity problem for finite semigroups , 1992, Journal of Symbolic Logic.