On Semidirect and Two-Sided Semidirect Products of Finite J-Trivial Monoids
暂无分享,去创建一个
[1] Francine Blanchet-Sadri,et al. On dot-depth two , 1990, RAIRO Theor. Informatics Appl..
[2] Howard Straubing,et al. FINITE SEMIGROUP VARIETIES OF THE FORM V,D , 1985 .
[3] John Rhodes,et al. The kernel of monoid morphisms , 1989 .
[4] Jorge Almeida. Semidirect products of pseudovarieties from the universal algebraist's point of view , 1989 .
[5] Wolfgang Thomas,et al. Classifying Regular Events in Symbolic Logic , 1982, J. Comput. Syst. Sci..
[6] A. Ehrenfeucht. An application of games to the completeness problem for formalized theories , 1961 .
[7] Wolfgang Thomas. An application of the Ehrenfeucht-Fraisse game in formal language theory , 1984 .
[8] Imre Simon,et al. Piecewise testable events , 1975, Automata Theory and Formal Languages.
[9] Francine Blanchet-Sadri,et al. On a complete set of generators for dot-depth two , 1994, Discret. Appl. Math..
[10] Bernhard Banaschewski,et al. The Birkhoff Theorem for varieties of finite algebras , 1983 .
[11] Jean-Éric Pin. Hiérarchies de Concaténation , 1984, RAIRO Theor. Informatics Appl..
[12] Francine Blanchet-Sadri,et al. Games, Equations and Dot-Depth Two Monoids , 1992, Discret. Appl. Math..
[13] Howard Straubing,et al. On a Conjecture Concerning Dot-Depth Two Languages , 1992, Theor. Comput. Sci..
[14] Francine Blanchet-Sadri,et al. Some Logical Characterizations of the Dot-Depth Hierarchy and Applications , 1995, J. Comput. Syst. Sci..
[15] Stanley Burris,et al. A course in universal algebra , 1981, Graduate texts in mathematics.
[16] Francine Blanchet-Sadri. Equations on the Semidirect Product of a Finite Semilattice by a J-Trivial Monoid of Height k , 1995, RAIRO Theor. Informatics Appl..
[17] Janusz A. Brzozowski,et al. The Dot-Depth Hierarchy of Star-Free Languages is Infinite , 1978, J. Comput. Syst. Sci..
[18] Samuel Eilenberg. Automata, Languages and Machines, Vol. B , 1976 .
[19] Jan Reiterman,et al. The Birkhoff theorem for finite algebras , 1982 .
[20] Bret Tilson,et al. Categories as algebra: An essential ingredient in the theory of monoids , 1987 .
[21] Price E. Stiffler,et al. Chapter 1. Extension of the fundamental theorem of finite semigroups , 1973 .
[22] Dominique Perrin,et al. First-Order Logic and Star-Free Sets , 1986, J. Comput. Syst. Sci..
[23] Francine Blanchet-Sadri,et al. Equations and Monoid Varieties of Dot-Depth One and Two , 1994, Theor. Comput. Sci..
[24] Francine Blanchet-Sadri,et al. Games, equations and the dot-depth hierarchy , 1989 .
[25] Francine Blanchet-Sadri. The Dot-Depth of a Generating Class of Aperiodic Monoids is Computable , 1992, Int. J. Found. Comput. Sci..
[26] Janusz A. Brzozowski,et al. Dot-Depth of Star-Free Events , 1971, Journal of computer and system sciences (Print).
[27] Faith Ellen,et al. Languages of R-Trivial Monoids , 1980, J. Comput. Syst. Sci..
[28] F. Blanchet-Sadri,et al. Equations on the semidirect product of a finite semilattice by a finite commutative monoid , 1994 .
[29] J. Almeida. On iterated semidirect products of finite semilattices , 1991 .
[30] F. Blanchet-Sadri,et al. Equations and dot-depth one , 1993 .
[31] Pascal Weil,et al. Closure of Varieties of Languages under Products with Counter , 1992, J. Comput. Syst. Sci..
[32] Christine Irastorza. Base non finie de varietes , 1985, STACS.
[33] Jean-Eric Pin,et al. On semioirect products of two finite semilattices , 1984 .
[34] Francine Blanchet-Sadri,et al. Inclusion Relations Between Some Congruences Related to the Dot-depth Hierarchy , 1996, Discret. Appl. Math..
[35] John L. Rhodes,et al. Undecidability of the identity problem for finite semigroups , 1992, Journal of Symbolic Logic.