Integrated Output Matching Networks for Class–J/J−1 Power Amplifiers

In this paper, two output matching networks (OMNs) are proposed for integrated class-J and class-J<sup>−1</sup> mode power amplifiers (PAs). The first MN provides the required load impedances of the class-J mode (i.e., <inline-formula> <tex-math notation="LaTeX">$Z(f_{0})=R_{\mathrm{ opt}}+jR_{\mathrm{ opt}}$ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$Z({2}f_{0})=-j({3}\pi /{8})R_{\mathrm{ opt}}$ </tex-math></inline-formula>), whereas the second MN realizes the optimal impedances of class-J<sup>−1</sup> PAs (i.e., <inline-formula> <tex-math notation="LaTeX">$Z(f_{0})=R_{\mathrm{ opt}}-jR_{\mathrm{ opt}}$ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$Z({2}f_{0})=j({3}\pi /{8})R_{\mathrm{ opt}}$ </tex-math></inline-formula>). Detailed theoretical analyses are presented for each MN, and the values of matching components (i.e., inductors and capacitors) are obtained in terms of <inline-formula> <tex-math notation="LaTeX">$R_{\mathrm{ opt}}$ </tex-math></inline-formula>. Analytical derivations are verified by simulation results, while bandwidth and loss performances of each MN are also characterized. Two proof-of-concept class-J and class-J<sup>−1</sup> PAs are designed and implemented in a 0.25-<inline-formula> <tex-math notation="LaTeX">$\mu \text{m}$ </tex-math></inline-formula> GaAs process, where the proposed OMNs are employed in the designed circuits. The manufactured PAs show ≥28 dBm output power, ≥65% drain efficiency, and ≥61% power-added efficiency at 2 GHz.

[1]  Bumman Kim,et al.  Investigation of a Class-J Power Amplifier With a Nonlinear $C_{\rm out}$ for Optimized Operation , 2010, IEEE Transactions on Microwave Theory and Techniques.

[2]  Amirreza Alizadeh,et al.  Distributed Class-J Power Amplifiers , 2017, IEEE Transactions on Microwave Theory and Techniques.

[3]  Pui-In Mak,et al.  A 2-$\mu{\hbox{m}}$ InGaP/GaAs Class-J Power Amplifier for Multi-Band LTE Achieving 35.8-dB Gain, 40.5% to 55.8% PAE and 28-dBm Linear Output Power , 2016, IEEE Transactions on Microwave Theory and Techniques.

[4]  Deepak Sharma,et al.  Investigation of class J continuous mode for high-power solid-state RF amplifier , 2013 .

[5]  Amirreza Alizadeh,et al.  Class-J2 Power Amplifiers , 2017, IEEE Transactions on Circuits and Systems I: Regular Papers.

[6]  Amirreza Alizadeh,et al.  Investigation of a Class-J Mode Power Amplifier in Presence of a Second-Harmonic Voltage at the Gate Node of the Transistor , 2017, IEEE Transactions on Microwave Theory and Techniques.

[7]  Youngwoo Kwon,et al.  Broadband CMOS Stacked RF Power Amplifier Using Reconfigurable Interstage Network for Wideband Envelope Tracking , 2015, IEEE Transactions on Microwave Theory and Techniques.

[8]  S. Bensmida,et al.  Multichannel and Wideband Power Amplifier Design Methodology for 4G Communication Systems Based on Hybrid Class-J Operation , 2012, IEEE Transactions on Microwave Theory and Techniques.

[9]  Leonid Belostotski,et al.  Integrated Design of a Class-J Power Amplifier , 2013, IEEE Transactions on Microwave Theory and Techniques.

[10]  Milan M. Ilic,et al.  Simple Design of a Class-J Amplifier With Predetermined Efficiency , 2016, IEEE Microwave and Wireless Components Letters.

[11]  Amirreza Alizadeh,et al.  Waveform Engineering at Gate Node of Class-J Power Amplifiers , 2017, IEEE Transactions on Microwave Theory and Techniques.

[12]  Brian Floyd,et al.  A 28-GHz class-J Power Amplifier with 18-dBm output power and 35% peak PAE in 120-nm SiGe BiCMOS , 2014, 2014 IEEE 14th Topical Meeting on Silicon Monolithic Integrated Circuits in Rf Systems.

[13]  Zhijiang Dai,et al.  Extend the Class-B to Class-J Continuum Mode by Adding Arbitrary Harmonic Voltage Elements , 2016, IEEE Microwave and Wireless Components Letters.

[14]  J. Lees,et al.  A Methodology for Realizing High Efficiency Class-J in a Linear and Broadband PA , 2009, IEEE Transactions on Microwave Theory and Techniques.

[15]  Yan Li,et al.  A highly efficient 1-Watt broadband class-J SiGe power amplifier at 700MHz , 2012, 2012 IEEE 12th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems.

[16]  J. Benedikt,et al.  GaAs X-band high efficiency (>65%) Broadband (>30%) amplifier MMIC based on the Class B to Class J continuum , 2011, 2011 IEEE MTT-S International Microwave Symposium.

[17]  Chul Soon Park,et al.  Analysis of High-Efficiency Power Amplifier Using Second Harmonic Manipulation: Inverse Class-F/J Amplifiers , 2011, IEEE Transactions on Microwave Theory and Techniques.

[18]  Amirreza Alizadeh,et al.  A Broadband Integrated Class-J Power Amplifier in GaAs pHEMT Technology , 2016, IEEE Transactions on Microwave Theory and Techniques.

[19]  S. C. Cripps,et al.  RF Power Amplifiers for Wireless Communications , 1999 .

[20]  C. Fager,et al.  Theory and Design of Class-J Power Amplifiers With Dynamic Load Modulation , 2012, IEEE Transactions on Microwave Theory and Techniques.