Adaptive input selection for thermal error compensation models

Abstract The presented method selects optimal inputs for compensation models based on the Thermal Adaptive Learning Control methodology. The number of inputs and the individual inputs for each considered thermal error are automatically adapted. The intelligent combination of k-means clustering and Time Series Cluster Kernel enables the approach to handle time series of thermal error measurements with missing data due to operational reasons. The results show that the adaptive sensor selection approach, tested on a 5-axis-machine tool, significantly increases the robustness of the used compensation model. The productivity loss due to on-machine measurements is reduced by approximately 40 percent.

[1]  Ali M. Abdulshahed,et al.  The application of ANFIS prediction models for thermal error compensation on CNC machine tools , 2015, Appl. Soft Comput..

[2]  Philip Blaser,et al.  Adaptive learning control for thermal error compensation of 5-axis machine tools , 2017 .

[3]  Hui Liu,et al.  Study on the effects of changes in temperature-sensitive points on thermal error compensation model for CNC machine tool , 2015 .

[4]  H. Akaike A new look at the statistical model identification , 1974 .

[5]  Josef Mayr,et al.  Cutting Fluid Influence on Thermal Behavior of 5-axis Machine Tools , 2014 .

[6]  Josef Mayr,et al.  Thermal error compensation of rotary axes and main spindles using cooling power as input parameter , 2015 .

[7]  Robert Jenssen,et al.  Time Series Cluster Kernel for Learning Similarities between Multivariate Time Series with Missing Data , 2017, Pattern Recognit..

[8]  James B. Bryan,et al.  International Status of Thermal Error Research (1990) , 1990 .

[9]  Christian Brecher,et al.  Compensation of Thermo-elastic Machine Tool Deformation Based on Control internal Data , 2004 .

[10]  Christian Brecher,et al.  Thermal issues in machine tools , 2012 .

[11]  Josef Mayr,et al.  High precision grey-box model for compensation of thermal errors on five-axis machines , 2014 .

[12]  S. P. Lloyd,et al.  Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.

[13]  J. G. Yang,et al.  Application of synthetic grey correlation theory on thermal point optimization for machine tool thermal error compensation , 2009 .

[14]  Andrew W. Moore,et al.  X-means: Extending K-means with Efficient Estimation of the Number of Clusters , 2000, ICML.

[15]  Philip Blaser,et al.  An adaptive self-learning compensation approach for thermal errors on 5-axis machine tools handling an arbitrary set of sample rates , 2018 .

[16]  Wenjun Xu,et al.  Identification and optimal selection of temperature-sensitive measuring points of thermal error compensation on a heavy-duty machine tool , 2016 .