Simulation and stability analysis of impacting systems with complete chattering

This paper considers dynamical systems that are derived from mechanical systems with impacts. In particular we will focus on chattering—accumulation of impacts—for which local discontinuity mappings will be derived. We will first show how to use these mappings in simulation schemes, and secondly how the mappings are used to calculate the stability of limit cycles with chattering by solving the first variational equations.

[1]  Piotr Kowalczyk,et al.  A codimension-two scenario of sliding solutions in grazing–sliding bifurcations , 2006 .

[2]  Arne Nordmark,et al.  Non-periodic motion caused by grazing incidence in an impact oscillator , 1991 .

[3]  M. di Bernardo,et al.  Bifurcations of dynamical systems with sliding: derivation of normal-form mappings , 2002 .

[4]  C. Budd,et al.  Review of ”Piecewise-Smooth Dynamical Systems: Theory and Applications by M. di Bernardo, C. Budd, A. Champneys and P. 2008” , 2020 .

[5]  Karl Henrik Johansson,et al.  Self-oscillations and sliding in Relay Feedback Systems: Symmetry and bifurcations , 2001, Int. J. Bifurc. Chaos.

[6]  H. Dankowicz,et al.  Exploiting discontinuities for stabilization of recurrent motions , 2002 .

[7]  Harry Dankowicz,et al.  Low-Cost Control of Repetitive Gait in Passive Bipedal Walkers , 2005, Int. J. Bifurc. Chaos.

[8]  Friedrich Pfeiffer,et al.  Multibody Dynamics with Unilateral Contacts , 1996 .

[9]  Lawrence F. Shampine,et al.  The MATLAB ODE Suite , 1997, SIAM J. Sci. Comput..

[10]  H. Nijmeijer,et al.  Dynamics and Bifurcations ofNon - Smooth Mechanical Systems , 2006 .

[11]  Boris Hasselblatt,et al.  Handbook of Dynamical Systems , 2010 .

[12]  Arne Nordmark,et al.  Experiments on the Onset of Impacting Motion Using a Pipe Conveying Fluid , 1999 .

[13]  D. J. Pagano,et al.  Sliding bifurcations of equilibria in planar variable structure systems , 2003 .

[14]  Steven W. Shaw,et al.  On the dynamic response of a system with dry friction , 1986 .

[15]  R. E. Wilson,et al.  Coexisting solutions and bifurcations in mechanical oscillators with backlash , 2007 .

[16]  Jenny Jerrelind,et al.  Braille printer Dynamics , 1999 .

[17]  Anthony Blakeborough,et al.  AN ANALYTICAL RESPONSE OF CHURCH BELLS TO EARTHQUAKE EXCITATION , 2001 .

[18]  Uri M. Ascher,et al.  Computer methods for ordinary differential equations and differential-algebraic equations , 1998 .

[19]  A. Nordmark Universal limit mapping in grazing bifurcations , 1997 .

[20]  C. Glocker Set-valued force laws , 2001 .

[21]  Mario di Bernardo,et al.  Grazing, skipping and sliding: Analysis of the non-smooth dynamics of the DC/DC buck converter , 1998 .

[22]  Arne Nordmark,et al.  Discontinuity mappings for vector fields with higher order continuity , 2002 .

[23]  Mario di Bernardo,et al.  Bifurcations in Nonsmooth Dynamical Systems , 2008, SIAM Rev..

[24]  Steven W. Shaw,et al.  Periodically forced linear oscillator with impacts: Chaos and long-period motions , 1983 .

[25]  Fabio Dercole,et al.  SlideCont: an Auto97 driver for sliding bifurcation analysis , 2003 .

[26]  W. Beyn,et al.  Chapter 4 – Numerical Continuation, and Computation of Normal Forms , 2002 .

[27]  B. Brogliato Impacts in Mechanical Systems , 2000 .

[28]  Alan R. Champneys,et al.  Two-Parameter Discontinuity-Induced bifurcations of Limit Cycles: Classification and Open Problems , 2006, Int. J. Bifurc. Chaos.

[29]  Petri T. Piiroinen,et al.  Corner bifurcations in non-smoothly forced impact oscillators , 2006 .

[30]  Thomas F. Fairgrieve,et al.  AUTO 2000 : CONTINUATION AND BIFURCATION SOFTWARE FOR ORDINARY DIFFERENTIAL EQUATIONS (with HomCont) , 1997 .

[31]  Arne Nordmark,et al.  Existence of periodic orbits in grazing bifurcations of impacting mechanical oscillators , 2001 .

[32]  G. Stavroulakis Multibody Dynamics with Unilateral Contacts by Friedrich Pfeiffer and Christoph Glocker, Wiley, New York, 1996 , 1998 .

[33]  S. Sastry,et al.  Zeno hybrid systems , 2001 .

[34]  Bernard Brogliato,et al.  Impacts in Mechanical Systems: Analysis and Modelling , 2000 .

[35]  M. di Bernardo,et al.  Two-parameter nonsmooth bifurcations of limit cycles: classification and open problems , 2005 .

[36]  David J. Wagg,et al.  An experimental study of the impulse response of a vibro-impacting cantilever beam , 1999 .

[37]  Chris Budd,et al.  Chattering and related behaviour in impact oscillators , 1994, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.