Stochastic Learning for Sparse Discrete Markov Random Fields with Controlled Gradient Approximation Error
暂无分享,去创建一个
[1] Mathieu Bastian,et al. Gephi: An Open Source Software for Exploring and Manipulating Networks , 2009, ICWSM.
[2] É. Moulines,et al. On stochastic proximal gradient algorithms , 2014 .
[3] Massimiliano Pontil,et al. Empirical Bernstein Bounds and Sample-Variance Penalization , 2009, COLT.
[4] Wojciech Rejchel,et al. Sparse Estimation in Ising Model via Penalized Monte Carlo Methods , 2016, J. Mach. Learn. Res..
[5] David Page,et al. Temporal Poisson Square Root Graphical Models , 2018, ICML.
[6] Stephen P. Boyd,et al. Proximal Algorithms , 2013, Found. Trends Optim..
[7] David Page,et al. Genetic Variants Improve Breast Cancer Risk Prediction on Mammograms , 2013, AMIA.
[8] J. Lafferty,et al. High-dimensional Ising model selection using ℓ1-regularized logistic regression , 2010, 1010.0311.
[9] Yoshua Bengio,et al. Justifying and Generalizing Contrastive Divergence , 2009, Neural Computation.
[10] Ioannis Mitliagkas,et al. Improving Gibbs Sampler Scan Quality with DoGS , 2017, ICML.
[11] Michael I. Jordan,et al. Graphical Models, Exponential Families, and Variational Inference , 2008, Found. Trends Mach. Learn..
[12] Christian Igel,et al. Bounding the Bias of Contrastive Divergence Learning , 2011, Neural Computation.
[13] Justin Domke,et al. Projecting Markov Random Field Parameters for Fast Mixing , 2014, NIPS.
[14] Asja Fischer,et al. Training Restricted Boltzmann Machines , 2015, KI - Künstliche Intelligenz.
[15] Mark W. Schmidt,et al. Convergence Rates of Inexact Proximal-Gradient Methods for Convex Optimization , 2011, NIPS.
[16] David Page,et al. Learning Heterogeneous Hidden Markov Random Fields , 2014, AISTATS.
[17] Sinong Geng,et al. An Efficient Pseudo-likelihood Method for Sparse Binary Pairwise Markov Network Estimation , 2017, 1702.08320.
[18] Jean Honorio. Lipschitz Parametrization of Probabilistic Graphical Models , 2011, UAI.
[19] Chunming Zhang,et al. Multiple testing under dependence via graphical models , 2016 .
[20] Jean Honorio,et al. Convergence Rates of Biased Stochastic Optimization for Learning Sparse Ising Models , 2012, ICML.
[21] B. Schölkopf,et al. High-Dimensional Graphical Model Selection Using ℓ1-Regularized Logistic Regression , 2007 .
[22] David Page,et al. Bayesian Estimation of Latently-grouped Parameters in Undirected Graphical Models , 2013, NIPS.
[23] Daphne Koller,et al. Efficient Structure Learning of Markov Networks using L1-Regularization , 2006, NIPS.
[24] Robert Tibshirani,et al. Estimation of Sparse Binary Pairwise Markov Networks using Pseudo-likelihoods , 2009, J. Mach. Learn. Res..
[25] Grégoire Rey,et al. Empirical comparison study of approximate methods for structure selection in binary graphical models , 2014, Biometrical journal. Biometrische Zeitschrift.
[26] Elizabeth L. Wilmer,et al. Markov Chains and Mixing Times , 2008 .
[27] Nir Friedman,et al. Probabilistic Graphical Models - Principles and Techniques , 2009 .
[28] E. Burnside,et al. New Genetic Variants Improve Personalized Breast Cancer Diagnosis , 2014, AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science.