Methods of harmonic synthesis for global geopotential models and their first-, second- and third-order gradients

Four widely used algorithms for the computation of the Earth’s gravitational potential and its first-, second- and third-order gradients are examined: the traditional increasing degree recursion in associated Legendre functions and its variant based on the Clenshaw summation, plus the methods of Pines and Cunningham–Metris, which are free from the singularities that distinguish the first two methods at the geographic poles. All four methods are reorganized with the lumped coefficients approach, which in the cases of Pines and Cunningham–Metris requires a complete revision of the algorithms. The characteristics of the four methods are studied and described, and numerical tests are performed to assess and compare their precision, accuracy, and efficiency. In general the performance levels of all four codes exhibit large improvements over previously published versions. From the point of view of numerical precision, away from the geographic poles Clenshaw and Legendre offer an overall better quality. Furthermore, Pines and Cunningham–Metris are affected by an intrinsic loss of precision at the equator and suffer from additional deterioration when the gravity gradients components are rotated into the East-North-Up topocentric reference system.

[1]  M. Reguzzoni From the time-wise to space-wise GOCE observables , 2003 .

[2]  R. Koop,et al.  Simulation of gravity gradients: a comparison study , 1991 .

[3]  D. Schmidt,et al.  A Preliminary Gravitational Model to Degree 2160 , 2005 .

[4]  J. L. Spencer Pines nonsingular gravitational potential derivation, description and implementation , 1976 .

[5]  M. Wermuth,et al.  GOCE QUICK-LOOK GRAVITY FIELD ANALYSIS IN THE FRAMEWORK OF HPF , 2006 .

[6]  Reiner Rummel,et al.  Gravity field determination from satellite gradiometry , 1985 .

[7]  D. Vallado Fundamentals of Astrodynamics and Applications , 1997 .

[8]  Wolf-Dieter Schuh,et al.  GOCE Gravity Field Processing , 2005 .

[9]  G. Romain,et al.  Ellipsoidal Harmonic expansions of the gravitational potential: Theory and application , 2001 .

[10]  A. Erdelyi,et al.  Fonctions Spheriques de Legendre et Fonctions Spheroidales. , 1959 .

[11]  Elena Fantino,et al.  Evaluation of methods for spherical harmonic synthesis of the gravitational potential and its gradients , 2007 .

[12]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[13]  C. W. Clenshaw A note on the summation of Chebyshev series , 1955 .

[14]  B. Tapley Regularization and the computation of optimal trajectories , 1970 .

[15]  Gilles Métris,et al.  Derivatives of the Gravity Potential with Respect to Rectangular Coordinates , 1998 .

[16]  Christopher Jekeli,et al.  Gravity, Geoid and Space Missions , 2008 .

[17]  L. Bittner L. Robin, Functions Sphériques de Legendre et Fonctions Sphéroidales. Tome III. VIII + 289 S. m. 10 Abb. Paris 1959. Gauthier‐Villars. Preis brosch. 5.500 F , 1960 .

[18]  Will Featherstone,et al.  A unified approach to the Clenshaw summation and the recursive computation of very high degree and order normalised associated Legendre functions , 2002 .

[19]  Leland E. Cunningham,et al.  On the computation of the spherical harmonic terms needed during the numerical integration of the orbital motion of an artificial satellite , 1970 .

[20]  Yan Xu,et al.  GPS: Theory, Algorithms and Applications , 2003 .

[21]  Edward J. Krakiwsky,et al.  Geodesy, the concepts , 1982 .

[22]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[23]  W. Gautschi Computational Aspects of Three-Term Recurrence Relations , 1967 .

[24]  Alicja Smoktunowicz,et al.  Backward Stability of Clenshaw's Algorithm , 2002 .

[25]  John L. Junkins,et al.  Investigation of Finite-Element Representations of the Geopotential , 1975 .

[26]  M. Sharifi,et al.  Satellite gradiometry using a satellite pair , 2005 .

[27]  M. Drinkwater,et al.  GOCE: ESA’s First Earth Explorer Core Mission , 2003 .

[28]  E. Gill,et al.  An Autonomous Navigation System for the German Small Satellite Mission BIRD , 2000 .

[29]  David E. Smith,et al.  The Development of the NASA GSFC and NIMA Joint Geopotential Model , 1997 .

[30]  E. Fantino,et al.  Gravitational gradients by tensor analysis with application to spherical coordinates , 2009 .

[31]  Bob E. Schutz,et al.  Spherical harmonic synthesis and least squares computations in satellite gravity gradiometry , 1992 .

[32]  Thomas M. Lahey,et al.  Fortran 90 programming , 1994 .

[33]  E. Hobson The Theory of Spherical and Ellipsoidal Harmonics , 1955 .

[34]  N. Sneeuw A Semi-Analytical Approach to Gravity Field Analysis from Satellite Observations , 2000 .

[35]  L. Földváry,et al.  Effect of geopotential model errors on the projection of GOCE gradiometer observables , 2005 .

[36]  F. Sansò,et al.  Spherical harmonic analysis of satellite gradiometry , 1993 .

[37]  A. Deprit Note on the summation of Legendre series , 1979 .

[38]  Assessment of two methods for gravity field recovery from GOCE GPS-SST orbit solutions , 2003 .

[39]  Fernando Sansó,et al.  GOCE: The Earth Gravity Field by Space Gradiometry , 2002 .

[40]  Paul H. Roberts,et al.  Derivatives of addition theorems for Legendre functions , 1995, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[41]  William H. Press,et al.  Numerical Recipes: FORTRAN , 1988 .

[42]  G. Beutler,et al.  Earth gravity field from space : from sensors to earth sciences : proceedings of an ISSI workshop, 11-15 March 2002, Bern, Switzerland , 2003 .

[43]  Robert G. Gottlieb,et al.  Fast gravity, gravity partials, normalized gravity, gravity gradient torque and magnetic field: Derivation, code and data , 1993 .

[44]  Fernando Sansò,et al.  The latest test of the space-wise approach for GOCE data analysis , 2007 .

[45]  Samuel Pines,et al.  Uniform Representation of the Gravitational Potential and its Derivatives , 1973 .

[46]  Fernando Sansò,et al.  AN ENHANCED SPACE-WISE SIMULATION FOR GOCE DATA REDUCTION , 2004 .

[47]  Hood,et al.  Improved gravity field of the moon from lunar prospector , 1998, Science.

[48]  J. Lundberg,et al.  Recursion formulas of Legendre functions for use with nonsingular geopotential models , 1988 .

[49]  Christopher Jekeli,et al.  On the computation and approximation of ultra-high-degree spherical harmonic series , 2007 .

[50]  Jean-Pierre Barriot,et al.  Non-singular formulation of the gravity vector and gravity gradient tensor in spherical harmonics. , 1990 .

[51]  S. T. Sutton,et al.  On the distribution of anomalous mass within the Earth: forward models of the gravitational potential spectrum using ensembles of discrete mass elements , 1991 .

[52]  Gerard Petit,et al.  IERS Conventions (2003) , 2004 .

[53]  Oliver Montenbruck,et al.  Satellite Orbits: Models, Methods and Applications , 2000 .