Is your Schema Good Enough to Answer my Query?

Ontology-based data integration has been one of the practical methodologies for heterogeneous legacy database integrated service construction. However, it is neither efficient nor economical to build the crossdomain ontology on top of the schemas of each legacy database for the specific integration application than to reuse the existed ontologies. Then the question lies in whether the existed ontology is compatible with the cross-domain queries and with all the legacy systems. It is highly needed an effective criteria to evaluate the compatibility as it limits the upbound quality of the integrated services. This paper studies the semantic similarity of schemas from the aspect of properties. It provides a set of in-depth criteria, namely coverage and flexibility to evaluate the compatibility among the queries, the schemas and the existing ontology. The weights of classes are extended to make precise compatibility computation. The use of such criteria in the practical project verifies the applicability of our method.

[1]  Abha Moitra,et al.  Using OWL Ontologies as a Domain-Specific Language for Capturing Requirements for Formal Analysis and Test Case Generation , 2019, 2019 IEEE 13th International Conference on Semantic Computing (ICSC).

[2]  María Poveda-Villalón,et al.  Linked Open Vocabularies (LOV): A gateway to reusable semantic vocabularies on the Web , 2016, Semantic Web.

[3]  Michael Stonebraker,et al.  SilkMoth: An Efficient Method for Finding Related Sets with Maximum Matching Constraints , 2017, Proc. VLDB Endow..

[4]  Marko Horvat,et al.  Ontological heterogeneity as an obstacle for knowledge integration in the Semantic Web , 2016 .

[5]  Michael Stonebraker,et al.  Aurum: A Data Discovery System , 2018, 2018 IEEE 34th International Conference on Data Engineering (ICDE).

[6]  Daniel Garijo,et al.  WIDOCO: A Wizard for Documenting Ontologies , 2017, SEMWEB.

[7]  Michael Stonebraker,et al.  A Demo of the Data Civilizer System , 2017, SIGMOD Conference.

[8]  Giancarlo Guizzardi,et al.  From reference ontologies to ontology patterns and back , 2017, Data Knowl. Eng..

[9]  Martin Hepp,et al.  Reusing ontologies and language components for ontology generation , 2010, Data Knowl. Eng..

[10]  Junfeng Yang,et al.  OWL: Understanding and Detecting Concurrency Attacks , 2018, 2018 48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN).

[11]  Xin Luna Dong,et al.  MultiImport: Inferring Node Importance in a Knowledge Graph from Multiple Input Signals , 2020, KDD.

[12]  Theo Tryfonas,et al.  Frontiers in Artificial Intelligence and Applications , 2009 .

[13]  J. Euzenat,et al.  Ontology Matching , 2007, Springer Berlin Heidelberg.

[14]  Joongho Ahn,et al.  Ontology selection ranking model for knowledge reuse , 2011, Expert Syst. Appl..

[15]  Fausto Giunchiglia,et al.  Modeling Recipes for Online Search , 2016, OTM Conferences.

[16]  BOGUMIŁA HNATKOWSKA,et al.  Semi-Automatic Definition of Attribute Semantics for the Purpose of Ontology Integration , 2020, IEEE Access.

[17]  Asunción Gómez-Pérez,et al.  Why are ontologies not reused across the same domain? , 2019, J. Web Semant..

[18]  Michael Stonebraker,et al.  Dataxformer: Leveraging the Web for Semantic Transformations , 2015, CIDR.

[19]  Daisy Zhe Wang,et al.  Ten Years of WebTables , 2018, Proc. VLDB Endow..

[20]  Csongor Nyulas,et al.  BioPortal: enhanced functionality via new Web services from the National Center for Biomedical Ontology to access and use ontologies in software applications , 2011, Nucleic Acids Res..

[21]  Renée J. Miller,et al.  Open Data Integration , 2018, Proc. VLDB Endow..

[22]  Heiner Stuckenschmidt,et al.  Ontology Alignment Evaluation Initiative: Six Years of Experience , 2011, J. Data Semant..

[23]  Franjo Cecelja,et al.  Ontology evaluation for reuse in the domain of Process Systems Engineering , 2016, Comput. Chem. Eng..

[24]  Fausto Giunchiglia,et al.  Teleologies: Objects, Actions and Functions , 2017, ER.

[25]  Mattia Fumagalli,et al.  Entity Type Recognition - Dealing with the Diversity of Knowledge , 2020, KR.

[26]  Christian Bizer,et al.  Stitching Web Tables for Improving Matching Quality , 2017, Proc. VLDB Endow..

[27]  Ryutaro Ichise,et al.  Ontology Integration for Linked Data , 2014, Journal on Data Semantics.

[28]  Jérôme David,et al.  The Alignment API 4.0 , 2011, Semantic Web.

[29]  Bijan Parsia,et al.  The OWL Reasoner Evaluation (ORE) 2015 Competition Report , 2017, Journal of Automated Reasoning.

[30]  Irlán Grangel-González,et al.  VoCol: An Integrated Environment to Support Version-Controlled Vocabulary Development , 2016, EKAW.

[31]  Alon Y. Halevy,et al.  Goods: Organizing Google's Datasets , 2016, SIGMOD Conference.