The escape of heavy atoms from the ionosphere of HD209458b. II. Interpretation of the observations

Transits in the H I 1216 A (Lyman α), O I 1334 A, C II 1335 A, and Si III 1206.5 A lines constrain the properties of the upper atmosphere of HD209458b. In addition to probing the temperature and density profiles in the thermosphere, they have implications for the properties of the lower atmosphere. Fits to the observations with a simple empirical model and a direct comparison with a more complex hydrodynamic model constrain the mean temperature and ionization state of the atmosphere, and imply that the optical depth of the extended thermosphere of the planet in the atomic resonance lines is significant. In particular, it is sufficient to explain the observed transit depths in the H I 1216 A line. The detection of O at high altitudes implies that the minimum mass loss rate from the planet is approximately 6 × 106 kg s−1. The mass loss rate based on our hydrodynamic model is higher than this and implies that diffusive separation is prevented for neutral species with a mass lower than about 130 amu by the escape of H. Heavy ions are transported to the upper atmosphere by Coulomb collisions with H+ and their presence does not provide as strong constraints on the mass loss rate as the detection of heavy neutral atoms. Models of the upper atmosphere with solar composition and heating based on the average solar X-ray and EUV flux agree broadly with the observations but tend to underestimate the transit depths in the O I, C II, and Si III lines. This suggests that the temperature and/or elemental abundances in the thermosphere may be higher than expected from such models. Observations of the escaping atmosphere can potentially be used to constrain the strength of the planetary magnetic field. We find that a magnetic moment of m ≲ 0.04mJ, where mJ is the jovian magnetic moment, allows the ions to escape globally rather than only along open field lines. The detection of Si2+ in the thermosphere indicates that clouds of forsterite and enstatite do not form in the lower atmosphere. This has implications for the temperature and dynamics of the atmosphere that also affect the interpretation of transit and secondary eclipse observations in the visible and infrared wavelengths.

[1]  T. Brown,et al.  Detection of Planetary Transits Across a Sun-like Star , 1999, The Astrophysical journal.

[2]  D. Soderblom Planets Beyond the Solar System and the Next Generation of Space Missions , 1997 .

[3]  David Charbonneau,et al.  Hubble Space Telescope Time-Series Photometry of the Transiting Planet of HD?209458 , 2001 .

[4]  M. Osorio,et al.  Brown dwarfs and extrasolar planets , 1998 .

[5]  M. Taşer,et al.  Oscillator strengths for Be I , 2012 .

[6]  C. Moutou,et al.  Searching for helium in the exosphere of HD 209458b , 2003 .

[7]  Lotfi Ben-Jaffel,et al.  Exoplanet HD 209458b: Inflated Hydrogen Atmosphere but No Sign of Evaporation , 2007, 0711.1432.

[8]  D. Ehrenreich,et al.  Determining Atmospheric Conditions at the Terminator of the Hot Jupiter HD 209458b , 2008, 0803.1054.

[9]  K. Dere,et al.  Temperature and Center-Limb Variations of Transition Region Velocities , 1989 .

[10]  J. Holton An introduction to dynamic meteorology , 2004 .

[11]  Roger V. Yelle,et al.  Aeronomy of extra-solar giant planets at small orbital distances , 2003 .

[12]  J. Worden,et al.  Improved solar Lyman α irradiance modeling from 1947 through 1999 based on UARS observations , 2000 .

[13]  Robert W. Schunk,et al.  Ionospheres : physics, plasma physics, and chemistry , 2000 .

[14]  H. Lammer,et al.  Hydrogen ENA-cloud observation and modeling as a tool to study star-exoplanet interaction , 2011 .

[15]  C. Cecchi-Pestellini,et al.  The relative role of EUV radiation and X-rays in the heating of hydrogen-rich exoplanet atmospheres , 2009 .

[16]  R. Gilliland,et al.  Detection of an Extrasolar Planet Atmosphere , 2001, astro-ph/0111544.

[17]  Princeton,et al.  Theoretical Transmission Spectra during Extrasolar Giant Planet Transits , 1999, astro-ph/9912241.

[18]  R. P. Butler,et al.  A Transiting “51 Peg-like” Planet , 2000, The Astrophysical journal.

[19]  D. Morton,et al.  Atomic Data for Resonance Absorption Lines. III. Wavelengths Longward of the Lyman Limit for the Elements Hydrogen to Gallium , 2003 .

[20]  R. Hide The giant planets. , 1982 .

[21]  Adriana Silva-Valio,et al.  Estimating Stellar Rotation from Starspot Detection during Planetary Transits , 2008, 0808.2156.

[22]  Philippe Lemaire,et al.  The SUMER spectral atlas of solar-disk features , 2001 .

[23]  Helmut Lammer,et al.  ENERGETIC NEUTRAL ATOMS AROUND HD 209458b: ESTIMATIONS OF MAGNETOSPHERIC PROPERTIES , 2010 .

[24]  T. Owen,et al.  Updated Galileo probe mass spectrometer measurements of carbon, oxygen, nitrogen, and sulfur on Jupiter , 2004 .

[25]  A. Muñoz,et al.  Physical and chemical aeronomy of HD 209458b , 2007 .

[26]  B. Fegley,et al.  ATMOSPHERIC CHEMISTRY IN GIANT PLANETS, BROWN DWARFS, AND LOW-MASS DWARF STARS. III. IRON, MAGNESIUM, AND SILICON , 2010, 1001.3639.

[27]  Athena Coustenis,et al.  Search for spectroscopical signatures of transiting HD 209458b's exosphere , 2001 .

[28]  Zhi-Yun Li,et al.  HOT JUPITER MAGNETOSPHERES , 2010, 1011.0017.

[29]  E. Turner,et al.  A search for Hα absorption in the exosphere of the transiting extrasolar planet HD 209458b , 2004, astro-ph/0404469.

[30]  D. Hunten,et al.  Mass fractionation in hydrodynamic escape , 1987 .

[31]  A. Burrows,et al.  Modeling the Formation of Clouds in Brown Dwarf Atmospheres , 2002, astro-ph/0205192.

[32]  H. De Sterck,et al.  Transonic Hydrodynamic Escape of Hydrogen from Extrasolar Planetary Atmospheres , 2005 .

[33]  P. Lavvas,et al.  CHARACTERIZING THE THERMOSPHERE OF HD209458b WITH UV TRANSIT OBSERVATIONS , 2010, 1004.1396.

[34]  K. Lodders,et al.  ATMOSPHERIC SULFUR PHOTOCHEMISTRY ON HOT JUPITERS , 2009, 0903.1663.

[35]  Canada.,et al.  Atmospheric escape from hot Jupiters , 2004, astro-ph/0403369.

[36]  David Charbonneau,et al.  ATMOSPHERIC CIRCULATION OF HOT JUPITERS: COUPLED RADIATIVE-DYNAMICAL GENERAL CIRCULATION MODEL SIMULATIONS OF HD 189733b and HD 209458b , 2008, 0809.2089.

[37]  J. Worden,et al.  Evolution of Chromospheric Structures Derived from Ca II K Spectroheliograms: Implications for Solar Ultraviolet Irradiance Variability , 1998 .

[38]  P. Judge,et al.  On the Origin of the Basal Emission from Stellar Atmospheres: Analysis of Solar C II Lines , 2003 .

[39]  Kevin France,et al.  OBSERVATIONS OF MASS LOSS FROM THE TRANSITING EXOPLANET HD 209458b , 2010, 1005.1633.

[40]  David Charbonneau,et al.  Detection of Thermal Emission from an Extrasolar Planet , 2005 .

[41]  Drake Deming,et al.  Infrared radiation from an extrasolar planet , 2005, Nature.

[42]  B. Fegley,et al.  Atmospheric Chemistry in Giant Planets, Brown Dwarfs, and Low-Mass Dwarf Stars. II. Sulfur and Phosphorus , 2005, astro-ph/0511136.

[43]  G. Ballester,et al.  Hubble Space Telescope STIS Optical Transit Transmission Spectra of the Hot Jupiter HD 209458b , 2008, 0802.3864.

[44]  R. Kuschnig,et al.  WATER, METHANE, AND CARBON DIOXIDE PRESENT IN THE DAYSIDE SPECTRUM OF THE EXOPLANET HD 209458b , 2009, 0908.4010.

[45]  E. Parker DYNAMICAL PROPERTIES OF STELLAR CORONAS AND STELLAR WINDS. II- INTEGRATION OF THE HEAT FLOW EQUATION , 1964 .

[46]  K. Covey,et al.  EXOPLANETARY TRANSITS OF LIMB-BRIGHTENED LINES: TENTATIVE Si iv ABSORPTION BY HD 209458b , 2010, 1008.1073.

[47]  Cynthia S. Froning,et al.  SEARCHING FOR FAR-ULTRAVIOLET AURORAL/DAYGLOW EMISSION FROM HD 209458b , 2010 .

[48]  M. Mayor,et al.  An extended upper atmosphere around the extrasolar planet HD209458b , 2003, Nature.

[49]  Jonathan Tennyson,et al.  Water in the atmosphere of HD 209458b from 3.6–8 μm IRAC photometric observations in primary transit , 2010 .

[50]  Adam Burrows,et al.  CAN TiO EXPLAIN THERMAL INVERSIONS IN THE UPPER ATMOSPHERES OF IRRADIATED GIANT PLANETS? , 2009, 0902.3995.

[51]  K. Nicolas,et al.  High resolution EUV structure of the chromosphere-corona transition region above a sunspot , 1982 .

[52]  G. Gladstone Solar O I 1304-A triplet line profiles , 1992 .

[53]  Drake Deming,et al.  A spectrum of an extrasolar planet , 2007, Nature.

[54]  Sona Hosseini,et al.  ON THE EXISTENCE OF ENERGETIC ATOMS IN THE UPPER ATMOSPHERE OF EXOPLANET HD209458b , 2009, 0912.1409.

[55]  A. Burrows,et al.  On the Indirect Detection of Sodium in the Atmosphere of the Planetary Companion to HD 209458 , 2002, astro-ph/0208263.

[56]  J. Linsky,et al.  A New Measurement of the Electron Density in the Local Interstellar Medium , 1997 .

[57]  M. A. Barstow,et al.  O vi IN THE LOCAL INTERSTELLAR MEDIUM , 2009, 1009.5255.

[58]  David Charbonneau,et al.  The 3.6-8.0 μm Broadband Emission Spectrum of HD 209458b: Evidence for an Atmospheric Temperature Inversion , 2007, 0709.3984.

[59]  Paul R. Mahaffy,et al.  Noble gas abundance and isotope ratios in the atmosphere of Jupiter from the Galileo Probe Mass Spectrometer , 2000 .

[60]  Charles Wilkins A Grammar of the Sanskrĭta Language: OF THE ELEMENTS , 2011 .

[61]  G. Hebrard,et al.  Evaporation of the planet HD 189733b observed in H I Lyman-α , 2010, 1003.2206.

[62]  C. Moutou,et al.  Corrigendum to "The upper atmosphere of the exoplanet HD209458b revealed by the sodium D lines: Temperature-pressure profile, ionization layer and thermosphere" [2011, A&A, 527, A110] , 2011, 1110.5750.

[63]  R. G. West,et al.  METALS IN THE EXOSPHERE OF THE HIGHLY IRRADIATED PLANET WASP-12b , 2010, 1005.3656.

[64]  K. Lodders Solar System Abundances and Condensation Temperatures of the Elements , 2003 .

[65]  J. Kasting,et al.  Mass fractionation during transonic escape and implications for loss of water from Mars and Venus , 1986 .

[66]  L. Ben-Jaffel Spectral, Spatial, and Time Properties of the Hydrogen Nebula around Exoplanet HD 209458b , 2008, 0807.3796.

[67]  Stellar Lyα Emission Lines in the Hubble Space Telescope Archive: Intrinsic Line Fluxes and Absorption from the Heliosphere and Astrospheres* , 2005, astro-ph/0503372.

[68]  H. Lammer,et al.  Energetic neutral atoms as the explanation for the high-velocity hydrogen around HD 209458b , 2008, Nature.

[69]  R. Shine,et al.  Line formation in the solar chromosphere. I - The C II resonance lines observed with OSO 8 , 1978 .

[70]  David Charbonneau,et al.  Using Stellar Limb-Darkening to Refine the Properties of HD 209458b , 2006, astro-ph/0603542.

[71]  G. Orton,et al.  Methane and its isotopologues on Saturn from Cassini/CIRS observations , 2009 .

[72]  J. Vial,et al.  Variation of the full Sun hydrogen Lyman profiles through solar cycle 23 , 2005 .

[73]  E. Parker Dynamical properties of stellar coronas and stellar winds. i - integration of the momentum equation. , 1964 .

[74]  G. H'ebrard,et al.  Detection of Oxygen and Carbon in the Hydrodynamically Escaping Atmosphere of the Extrasolar Planet HD 209458b , 2004, astro-ph/0401457.

[75]  T. Fouchet,et al.  Saturn: Composition and Chemistry , 2009 .

[76]  T. Encrenaz,et al.  Element Abundances and Isotope Ratios in the Giant Planets and Titan , 2003 .

[77]  R. Akeson,et al.  The Mid-Infrared Spectrum of the Transiting Exoplanet HD 209458b , 2007, astro-ph/0702593.

[78]  Nikole K. Lewis,et al.  DISEQUILIBRIUM CARBON, OXYGEN, AND NITROGEN CHEMISTRY IN THE ATMOSPHERES OF HD 189733b AND HD 209458b , 2011, 1102.0063.

[79]  P. Lavvas,et al.  The escape of heavy atoms from the ionosphere of HD209458b. I. A photochemical–dynamical model of the thermosphere , 2012, 1210.1536.

[80]  E. Guinan,et al.  The effect of tidal locking on the magnetospheric and atmospheric evolution of ``Hot Jupiters'' , 2004 .

[81]  P. J. Schinder,et al.  Temperatures, Winds, and Composition in the Saturnian System , 2005, Science.

[82]  Kevin France,et al.  Searching for Far-ultraviolet Auroral/dayglow Emission from HD209458b with the Cosmic Origins Spectrograph , 2010, 1002.3218.

[83]  P. Lemaire,et al.  The Ly-α profile and center-to-limb variation of the quiet Sun , 2008, 0812.1441.