The saddle point problem and the Manteuffel algorithm

In the last two decades, the augmented linear systems and the saddle point problems have been solved by many researchers who have used the conjugate gradient method or the generalized SOR iterative method and variants of them. In the latter class of methods, when the block $$A \in {\mathrm{I\!R}}^{m\times m}$$A∈IRm×m of the matrix coefficient $$\mathcal {A} = \left[ \begin{array}{cc} A &{} B \\ -B^T &{} 0\end{array}\right] \in {\mathrm{I\!R}}^{(m+n) \times (m+n)}$$A=AB-BT0∈IR(m+n)×(m+n), $$m \ge n,$$m≥n, of the linear system to be solved, is symmetric positive definite and $${\mathrm{rank}}(B) =r \le n$$rank(B)=r≤n, convergence regions and optimal values of the parameters involved have been determined. In this work, we consider the block A to be nonsymmetric positive definite, $${\mathrm{rank}}(B) =r < n $$rank(B)=r<n, and use a two-level stationary iterative method whose main step is the linear second-order stationary iterative method for the solution of this class of problems. This method leads to the singular Manteuffel algorithm and the determination of its optimal parameters. As a byproduct, the optimal parameters of the Generalized Modified SSOR method in a particular case are also determined. Numerical examples verify our theoretical findings.

[1]  Louis A. Hageman,et al.  Iterative Solution of Large Linear Systems. , 1971 .

[2]  Henry C. Thacher,et al.  Applied and Computational Complex Analysis. , 1988 .

[3]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[4]  A. Wathen,et al.  Minimum residual methods for augmented systems , 1998 .

[5]  M. Neumann,et al.  Iterative Methods with k-Part Splittings , 1981 .

[6]  G. Golub,et al.  Inexact and preconditioned Uzawa algorithms for saddle point problems , 1994 .

[7]  H. Keller,et al.  Analysis of Numerical Methods , 1969 .

[8]  R. Varga,et al.  Chebyshev semi-iterative methods, successive overrelaxation iterative methods, and second order Richardson iterative methods , 1961 .

[9]  On the equivalence of extrapolation and Richardson’s iteration and its applications , 2005 .

[10]  Gene H. Golub,et al.  SOR-like Methods for Augmented Systems , 2001 .

[11]  Bing Zheng,et al.  On semi-convergence of parameterized Uzawa methods for singular saddle point problems☆ , 2009 .

[12]  Apostolos Hadjidimos,et al.  The principle of extrapolation and the Cayley Transform , 2008 .

[13]  Naimin Zhang,et al.  Constraint preconditioners for solving singular saddle point problems , 2013, J. Comput. Appl. Math..

[14]  A. Hadjidimos,et al.  On the Optimization of the Classical Iterative Schemes for the Solution of Complex Singular Linear Systems , 1985 .

[15]  Apostolos Hadjidimos,et al.  Optimum stationary and nonstationary iterative methods for the solution of singular linear systems , 1987 .

[16]  The optimal solution to the problem of complex extrapolation of a first-order scheme , 1984 .

[17]  T. A. Manteuffel Optimal parameters for linear second-degree stationary iterative methods , 1982 .

[18]  T. Manteuffel The Tchebychev iteration for nonsymmetric linear systems , 1977 .

[19]  Chen Greif,et al.  Block Stationary Methods for Nonsymmetric Cyclically Reduced Systems Arising from Three-Dimensional Elliptic Equations , 1999, SIAM J. Matrix Anal. Appl..

[20]  Sze-Tsen Hu,et al.  Elements of Real Analysis , 1967 .

[21]  Apostolos Hadjidimos,et al.  Optimization of extrapolated Cayley transform with non-Hermitian positive definite matrix ☆ , 2014 .

[22]  Gene H. Golub,et al.  Matrix computations , 1983 .

[23]  Apostol T. Vassilev,et al.  Analysis of the Inexact Uzawa Algorithm for Saddle Point Problems , 1997 .

[24]  Chen Greif,et al.  Iterative Solution of Cyclically Reduced Systems Arising from Discretization of the Three-Dimensional Convection-Diffusion Equation , 1998, SIAM J. Sci. Comput..

[25]  X. Wu,et al.  Conjugate Gradient Method for Rank Deficient Saddle Point Problems , 2004, Numerical Algorithms.

[26]  G. Golub,et al.  ITERATIVE METHODS FOR CYCLICALLY REDUCED NON-SELF-ADJOINT LINEAR SYSTEMS , 1990 .

[27]  Xue-Ping Guo,et al.  Accelerated SOR-like method for augmented linear systems , 2016 .

[28]  T. Manteuffel An Iterative Method for Solving Nonsymmetric Linear Systems With Dynamic Estimation of Parameters , 1975 .

[29]  Nikolaos M. Missirlis,et al.  A comparison of the Extrapolated Successive Overrelaxation and the Preconditioned Simultaneous Displacement methods for augmented linear systems , 2015, Numerische Mathematik.

[30]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[31]  Sen Li,et al.  A class of generalized shift-splitting preconditioners for nonsymmetric saddle point problems , 2015, Appl. Math. Lett..

[32]  Beresford N. Parlett,et al.  On generalized successive overrelaxation methods for augmented linear systems , 2005, Numerische Mathematik.

[33]  Yimin Wei,et al.  On the convergence of general stationary iterative methods for range-Hermitian singular linear systems , 2010, Numer. Linear Algebra Appl..

[34]  Naimin Zhang,et al.  Semi-convergence analysis of GMSSOR methods for singular saddle point problems , 2014, Comput. Math. Appl..

[35]  A. Hadjidimos,et al.  On the optimal complex extrapolation of the complex Cayley transform , 2009 .

[36]  A. Hallett Alternative techniques for solving systems of nonlinear equations , 1982 .

[37]  Zeng-Qi Wang,et al.  On parameterized inexact Uzawa methods for generalized saddle point problems , 2008 .

[38]  Gene H. Golub,et al.  Hermitian and Skew-Hermitian Splitting Methods for Non-Hermitian Positive Definite Linear Systems , 2002, SIAM J. Matrix Anal. Appl..