On the Helical Crystals of Cholesterol Monohydrate

[1]  L. Addadi,et al.  Crystalline Cholesterol: The Material and Its Assembly Lines , 2022, Annual Review of Materials Research.

[2]  L. Addadi,et al.  Polymorphism, Structure, and Nucleation of Cholesterol·H2O at Aqueous Interfaces and in Pathological Media: Revisited from a Computational Perspective , 2021, Journal of the American Chemical Society.

[3]  A. Alivisatos,et al.  Nanocrystals as Model Systems for Studying the Interplay Between Crystallization and Chirality , 2021, Israel Journal of Chemistry.

[4]  A. Alivisatos,et al.  The chain of chirality transfer in tellurium nanocrystals , 2021, Science.

[5]  Tun Naw Sut,et al.  Crystallization of Cholesterol in Phospholipid Membranes Follows Ostwald's Rule of Stages. , 2020, Journal of the American Chemical Society.

[6]  A. Rohl,et al.  Why Are Some Crystals Straight? , 2020, The Journal of Physical Chemistry C.

[7]  L. Shimon,et al.  Emergence of chirality and structural complexity in single crystals at the molecular and morphological levels , 2020, Nature Communications.

[8]  N. Tamura,et al.  Helical van der Waals crystals with discretized Eshelby twist , 2019, Nature.

[9]  Igor L. Medintz,et al.  The Role of Ligands in the Chemical Synthesis and Applications of Inorganic Nanoparticles. , 2019, Chemical reviews.

[10]  L. Addadi,et al.  The Effect of the Phospholipid Bilayer Environment on Cholesterol Crystal Polymorphism. , 2019, ChemPlusChem.

[11]  L. Addadi,et al.  Two polymorphic cholesterol monohydrate crystal structures form in macrophage culture models of atherosclerosis , 2018, Proceedings of the National Academy of Sciences.

[12]  E. Grelet,et al.  Chirality-controlled crystallization via screw dislocations , 2018, Nature Communications.

[13]  Patrick Davidson,et al.  Ligand-induced twisting of nanoplatelets and their self-assembly into chiral ribbons , 2017, Science Advances.

[14]  T. Hyeon,et al.  Surface ligands in synthesis, modification, assembly and biomedical applications of nanoparticles , 2014 .

[15]  M. Ward,et al.  Illusory spirals and loops in crystal growth , 2013, Proceedings of the National Academy of Sciences.

[16]  K. Ernst Molecular chirality in surface science , 2013 .

[17]  Fei Meng,et al.  Screw dislocation driven growth of nanomaterials. , 2013, Accounts of chemical research.

[18]  J. Dunitz La Primavera: An Autobiographical Essay by Jack D. Dunitz , 2013 .

[19]  L. Addadi,et al.  Crystalline lipid domains: characterization by X-ray diffraction and their relation to biology. , 2011, Angewandte Chemie.

[20]  Yongjin Sung,et al.  Thickness–radius relationship and spring constants of cholesterol helical ribbons , 2009, Proceedings of the National Academy of Sciences.

[21]  Song Jin,et al.  Dislocation-Driven Nanowire Growth and Eshelby Twist , 2008, Science.

[22]  G. Benedek,et al.  Structure of cholesterol helical ribbons and self-assembling biological springs , 2006, Proceedings of the National Academy of Sciences.

[23]  K. Kjaer,et al.  Trapping crystal nucleation of cholesterol monohydrate: relevance to pathological crystallization. , 2005, Biophysical journal.

[24]  A. Rohl,et al.  The epitaxial growth of cholesterol crystals from bile solutions on calcite substrates. , 2004, Journal of the American Chemical Society.

[25]  G. Benedek,et al.  Self-assembly of helical ribbons. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[26]  M. Carey,et al.  Cholesterol crystallization from a dilute bile salt-rich model bile , 1994 .

[27]  G. Benedek,et al.  Elastic free energy of anisotropic helical ribbons as metastable intermediates in the crystallization of cholesterol. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[28]  B. Craven,et al.  Crystal structure of cholesterol monohydrate , 1976, Nature.

[29]  Dorothy Mereness,et al.  Thereʼs More to the Story , 1964 .

[30]  J. D. Eshelby Screw Dislocations in Thin Rods , 1953 .

[31]  W. K. Burton,et al.  Role of Dislocations in Crystal Growth , 1949, Nature.

[32]  C. Carlisle,et al.  The crystal structure of cholesteryl iodide , 1945, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[33]  J. D. Bernal Crystal Structures of Vitamin D and Related Compounds , 1932, Nature.

[34]  H. Wieland,et al.  Untersuchungen über die Konstitution der Gallensäuren. XXXIX. Mitteilung. Zur Kenntnis der 12-Oxy-cholansäure. , 1932 .