동적 output neuron을 이용한 LVQ 기반 물체 분류
暂无分享,去创建一个
기존의 LVQ(Learning Vector Quantization) 방법을 이용하여 물체를 분류하면 데이터의 학습이 빠르고 연산량이 적어 실시간으로 물체를 분류할 수 있는 장점이 있다. 하지만 데이터의 훈련시 output neuron의 개수를 정확히 예측할 수 없고 output neuron의 개수에 따라 물체를 분류하는 정확도가 매우 달라질 수 있다. 그러므로 본 논문에서는 output neuron의 개수를 데이터의 특성에 맞게 결정해주는 알고리즘을 제시한다. DLVQ(Dynamic Learning Vector Quantization) 알고리즘은 승자로 결정된 가중치 벡터의 부류가 샘플 데이터의 부류와 같으면 업데이트하고 다르면 새로운 가중치 벡터로 생성한다. 제한한 알고리즘의 가장 다른 부분은 미리 output neuron의 개수를 정하는 것이 아니라 훈련 과정에서 동적으로 output neuron의 개수를 생성하는 것이다. 그리고 클러터의 구분 방법을 제시하여 사람, 차, 클러터를 구분할 수 있다.