Effects of oxygen partial pressure on the electrical properties and phase transitions in (Ba,Ca)(Ti,Zr)O3 ceramics

[1]  Peng Liu,et al.  Hot-press sintering K0.5Na0.5NbO3–0.5 mol%Al2O3 ceramics with enhanced ferroelectric and piezoelectric properties , 2019, Journal of Materials Science.

[2]  Yunfei Liu,et al.  Large strain with low hysteresis in Sn-modified Bi0.5(Na0.75K0.25)0.5TiO3 lead-free piezoceramics , 2019, Journal of Materials Science.

[3]  C. Fu,et al.  Enhanced piezoelectric response of (Ba,Ca)(Ti, Zr)O3 ceramics by super large grain size and construction of phase boundary , 2019, Journal of Alloys and Compounds.

[4]  V. V. B. Prasad,et al.  Superior energy storage performance and fatigue resistance in ferroelectric BCZT thin films grown in an oxygen-rich atmosphere , 2019, Journal of Materials Chemistry C.

[5]  Jacob L. Jones,et al.  Total scattering and diffraction studies of lead-free piezoelectric (1-x)Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3 deconvolute intrinsic and extrinsic contributions to electromechanical strain , 2019, Acta Materialia.

[6]  Q. Shen,et al.  Structural and electrical properties of BCZT ceramics synthesized by sol–gel-hydrothermal process at low temperature , 2019, Journal of Materials Science: Materials in Electronics.

[7]  Longtu Li,et al.  Enhanced temperature stability of electric-field-induced strain in KNN-based ceramics , 2019, Journal of Alloys and Compounds.

[8]  C. Fu,et al.  Microstructure, Enhanced Relaxor-Like Behavior and Electric Properties of (Ba0.85Ca0.15)(Zr0.1−xHfxTi0.9)O3 Ceramics , 2019, Journal of Electronic Materials.

[9]  Wei Li,et al.  Progress in high-strain perovskite piezoelectric ceramics , 2019, Materials Science and Engineering: R: Reports.

[10]  J. Erhart,et al.  The complex evaluation of functional properties of nearly dense BCZT ceramics and their dependence on the grain size , 2019, Ceramics International.

[11]  Z. Gan,et al.  Photoluminescence and optical temperature sensing in Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free ceramics , 2019, Ceramics International.

[12]  Xiao Liu,et al.  Structure evolution and ferroelectric properties in stoichiometric Bi0.5+xNa0.5−xTi1−0.5xO3 , 2019, Journal of Materials Science.

[13]  Jacob L. Jones,et al.  Deconvolved intrinsic and extrinsic contributions to electrostrain in high performance, Nb-doped Pb(Zr Ti1-)O3 piezoceramics (0.50 ≤ x ≤ 0.56) , 2018, Acta Materialia.

[14]  Jianguo Zhu,et al.  Recent development in lead-free perovskite piezoelectric bulk materials , 2018, Progress in Materials Science.

[15]  X. Dong,et al.  Enhanced Curie temperature and piezoelectric properties of (Ba 0.85 Ca 0.15 )(Zr 0.10 Ti 0.90 )O 3 lead-free ceramics after the addition of LiTaO 3 , 2018, Materials Research Bulletin.

[16]  T. Lookman,et al.  Origin of large electrostrain in Sn4+ doped Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3 ceramics , 2018, Acta Materialia.

[17]  Tao Qi,et al.  Role of Cu and Y in sintering, phase transition, and electrical properties of BCZT lead-free piezoceramics , 2018, Ceramics International.

[18]  S. S. Islam,et al.  A comparative study of structural and electrical properties in lead-free BCZT ceramics: Influence of the synthesis method , 2018 .

[19]  Tonshaku Tou,et al.  Applications of lead-free piezoelectric materials , 2018, MRS Bulletin.

[20]  Liping Zhang,et al.  The effect of sintering atmospheres on the properties of CSBT-0.15 ferroelectric ceramics , 2018, Ceramics International.

[21]  Xiaodong Yan,et al.  Boosting energy harvesting performance in (Ba,Ca)(Ti,Zr)O3 lead-free perovskites through artificial control of intermediate grain size. , 2018, Dalton transactions.

[22]  Yang Yu,et al.  Giant Piezoelectric Coefficients in Relaxor Piezoelectric Ceramic PNN‐PZT for Vibration Energy Harvesting , 2018 .

[23]  M. Lanagan,et al.  Effect of oxygen treatment on structure and electrical properties of Mn-doped Ca 0.6 Sr 0.4 TiO 3 ceramics , 2018, Journal of the European Ceramic Society.

[24]  Huajun Sun,et al.  A brief review of Ba(Ti 0.8 Zr 0.2 )O 3 -(Ba 0.7 Ca 0.3 )TiO 3 based lead-free piezoelectric ceramics: Past, present and future perspectives , 2018 .

[25]  Q. Shen,et al.  Effect of annealing temperature on structural and electrical properties of BCZT ceramics prepared by Plasma Activated Sintering , 2018 .

[26]  Wenlong Yang,et al.  Effects of Tb doping on structural and electrical properties of 47(Ba 0.7 Ca 0.3 )TiO 3 –0.53Ba(Zr 0.2 Ti 0.8 )O 3 thin films at various annealing temperature by pulsed laser deposition , 2018 .

[27]  Jingdong Guo,et al.  Low temperature sintering and role of room-temperature phase transition in the electrical properties of (Ba0.85Ca0.15)(Zr0.10Ti0.90)1−x(Cu1/3Nb2/3)xO3 ceramics , 2018, Journal of Materials Science: Materials in Electronics.

[28]  W. Cao,et al.  Exceptionally High Piezoelectric Coefficient and Low Strain Hysteresis in Grain-Oriented (Ba, Ca)(Ti, Zr)O3 through Integrating Crystallographic Texture and Domain Engineering. , 2017, ACS applied materials & interfaces.

[29]  Longtu Li,et al.  Grain size effect and microstructure influence on the energy storage properties of fine-grained BaTiO3-based ceramics , 2017 .

[30]  Yudong Hou,et al.  Composition-driven phase boundary and its energy harvesting performance of BCZT lead–free piezoelectric ceramic , 2017 .

[31]  J. Íñiguez,et al.  Microscopic origins of the large piezoelectricity of leadfree (Ba,Ca)(Zr,Ti)O3 , 2017, Nature Communications.

[32]  P. Vilarinho,et al.  Giant dielectric permittivity and high tunability in Y-doped SrTiO3 ceramics tailored by sintering atmosphere , 2017 .

[33]  M. Dolgos,et al.  Understanding the structure–property relationships of the ferroelectric to relaxor transition of the (1 − x)BaTiO3–(x)BiInO3 lead-free piezoelectric system , 2017, Journal of Materials Science.

[34]  Xiaolei Li,et al.  Texture development in Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free ceramics prepared by reactive template grain growth with different Ba and Ca sources , 2016 .

[35]  A. Kholkin,et al.  Defect chemistry and relaxation processes: effect of an amphoteric substituent in lead-free BCZT ceramics. , 2016, Physical chemistry chemical physics : PCCP.

[36]  Hui Yan,et al.  The Occupation Behavior of Y2O3 and Its Effect on the Microstructure and Electric Properties in X7R Dielectrics , 2016 .

[37]  D. Das,et al.  Effect of sintering temperature on structural, dielectric, piezoelectric and ferroelectric properties of sol–gel derived BZT-BCT ceramics , 2016 .

[38]  Xiaolei Li,et al.  Highly textured Ba0.85Ca0.15Ti0.90Zr0.10O3 ceramics prepared by reactive template grain growth process , 2016 .

[39]  J. Zhai,et al.  Enhanced electromechanical properties in -textured (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 lead-free piezoceramics , 2016 .

[40]  Parveen Kumar,et al.  Structural and dielectric properties of substituted barium titanate ceramics for capacitor applications , 2015 .

[41]  J. Koh,et al.  Grain size effects on the dielectric properties of CaCu3Ti4O12 ceramics for supercapacitor applications , 2015 .

[42]  M. N. Rafiq,et al.  Dielectric and impedance spectroscopic studies of lead-free barium‐calcium‐zirconium‐titanium oxide ceramics , 2015 .

[43]  T. Button,et al.  Chemical Synthesis, Sintering and Piezoelectric Properties of Ba0.85Ca0.15 Zr0.1Ti0.9O3 Lead‐Free Ceramics , 2015 .

[44]  Xiaolei Li,et al.  Microstructure and electrical properties in Zn-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 piezoelectric ceramics , 2015 .

[45]  Changhong Yang,et al.  Na0.5Bi0.5(Ti0.98Zr0.02)O3 thin film with improved performance by modifying annealing atmosphere and Zr doping content , 2015 .

[46]  X. Chao,et al.  Dielectric Properties and Impedance Spectroscopy of MnCO3-Modified (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 Lead-Free Ceramics , 2015 .

[47]  H. Yan,et al.  Enhancement of electric field‐induced strain in BaTiO3 ceramics through grain size optimization , 2015 .

[48]  M. Courty,et al.  Room temperature electro-caloric effect in lead-free Ba(Zr0.1Ti0.9)1−xSnxO3 (x=0, x=0.075) ceramics , 2015 .

[49]  Y. Pu,et al.  Enhanced relaxor ferroelectric behavior of BCZT lead-free ceramics prepared by hydrothermal method , 2014 .

[50]  E. Longo,et al.  Structural refinement, optical and ferroelectric properties of microcrystalline Ba(Zr0.05Ti0.95)O3 perovskite , 2014 .

[51]  A. Agarwal,et al.  Effect of Zr substitution on phase transformation and dielectric properties of Ba0.9Ca0.1TiO3 ceramics , 2013 .

[52]  Priyanka,et al.  Electrical characterization of zirconium substituted barium titanate using complex impedance spectroscopy , 2013, Bulletin of Materials Science.

[53]  Mupeng Zheng,et al.  Effect of valence state and incorporation site of cobalt dopants on the microstructure and electrical properties of 0.2PZN–0.8PZT ceramics , 2013 .

[54]  Dunmin Lin,et al.  Effects of MnO2 and sintering temperature on microstructure, ferroelectric, and piezoelectric properties of Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free ceramics , 2013, Journal of Materials Science.

[55]  J. Zhai,et al.  Correlation Between the Microstructure and Electrical Properties in High‐Performance (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 Lead‐Free Piezoelectric Ceramics , 2012 .

[56]  D. Bao,et al.  Effects of Mn doping on structural and dielectric properties of sol–gel-derived (Ba0.835Ca0.165)(Zr0.09Ti0.91)O3 thin films , 2012 .

[57]  Jianguo Zhu,et al.  Role of room-temperature phase transition in the electrical properties of (Ba, Ca)(Ti, Zr)O3 ceramics , 2011 .

[58]  Yongxiang Li,et al.  Enhanced piezoelectric properties of (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 lead-free ceramics by optimizing calcination and sintering temperature , 2011 .

[59]  R. Eitel,et al.  Origin and magnitude of the large piezoelectric response in the lead-free (1-x)BiFeO_3-xBaTiO_3 solid solution , 2011 .

[60]  X. Ren,et al.  Large piezoelectric effect in Pb-free ceramics. , 2009, Physical review letters.

[61]  Boping Zhang,et al.  Dielectric and piezoelectric properties of (Ba0.95Ca0.05)(Ti0.88Zr0.12)O3 ceramics sintered in a protective atmosphere , 2009 .

[62]  Hui Yan,et al.  The enhancement of relaxation of 0.5PZN-0.5PZT annealed in different atmospheres , 2009 .

[63]  Changhong Yang,et al.  Enhanced multiferroic properties of (1 1 0)-oriented BiFeO3 film deposited on Bi3.5Nd0.5Ti3O12-buffered indium tin oxide/Si substrate , 2008 .

[64]  W. Cao The strain limits on switching , 2005, Nature Materials.

[65]  C. Chien,et al.  Domain structure study of SrBi2Ta2O9 ferroelectric thin films by scanning capacitance microscopy , 2003 .

[66]  Hyoun‐Ee Kim,et al.  Effect of annealing atmosphere on domain structures and electromechanical properties of Pb(Zn1/3Nb2/3)O3-based ceramics , 2001 .

[67]  G. Haertling Ferroelectric ceramics : History and technology , 1999 .

[68]  T. Norby,et al.  THE DEFECT STRUCTUFE OF SrTi 1−x Fe x O 3−y ( x = 0–0.8) INVESTIGATED BY ELECTRICAL CONDUCTIVITY MEASUREMENTS AND ELECTRON ENERGY LOSS SPECTROSCOPY (EELS) , 1997 .

[69]  Frey Mh,et al.  GRAIN-SIZE EFFECT ON STRUCTURE AND PHASE TRANSFORMATIONS FOR BARIUM TITANATE , 1996 .

[70]  J. Burfoot,et al.  Grain-size effects on properties of some ferroelectric ceramics , 1974 .

[71]  W. Buessem,et al.  Phenomenological Theory of High Permittivity in Fine‐Grained Barium Titanate , 1966 .