UvA-DARE ( Digital Academic Repository ) Design considerations for generic grouping in vision

Grouping in vision can be seen as the process that organizes image entities into higher-level structures. Despite its importance, there is little consistency in the statement of the grouping problem in literature. In addition, most grouping algorithms in vision are inspired on a specific technique, rather than being based on desired characteristics, making it cumbersome to compare the behavior of various methods. This paper discusses six precisely formulated considerations for the design of generic grouping algorithms in vision: proper definition, invariance, multiple interpretations, multiple solutions, simplicity and robustness. We observe none of the existing algorithms for grouping in vision meet all the considerations. We present a simple algorithm as an extension of a classical algorithm, where the extension is based on taking the considerations into account. The algorithm is applied to three examples: grouping point sets, grouping poly-lines, and grouping flow-field vectors. The complexity of the greedy algorithm isOðnOGÞ, whereOG is the complexity of the grouping measure.

[1]  Norbert Krüger,et al.  Collinearity and Parallelism are Statistically Significant Second-Order Relations of Complex Cell Responses , 1998, Neural Processing Letters.

[2]  Sanjoy K. Mitter,et al.  Hierarchical Image Segmentation—Part I: Detection of Regular Curves in a Vector Graph , 1998, International Journal of Computer Vision.

[3]  Refractor Vision , 2000, The Lancet.

[4]  A.W.M. Smeulders,et al.  Requirements for generic grouping in vision and an algorithm , 2001 .

[5]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[6]  S. Zucker,et al.  The Curve Indicator Random Field: Curve Organization Via Edge Correlation , 2000 .

[7]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[8]  Simone Santini,et al.  Similarity Measures , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Michael Lindenbaum,et al.  A Generic Grouping Algorithm and Its Quantitative Analysis , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  S. Zucker,et al.  Evidence for boundary-specific grouping , 1998, Vision Research.

[11]  David W. Jacobs,et al.  Robust and Efficient Detection of Salient Convex Groups , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Arnold W. M. Smeulders,et al.  An axiomatic approach to clustering line-segments , 1995, Proceedings of 3rd International Conference on Document Analysis and Recognition.

[13]  Eric Saund Identifying salient circular arcs on curves , 1993 .

[14]  James M. Keller,et al.  A possibilistic approach to clustering , 1993, IEEE Trans. Fuzzy Syst..

[15]  Kim L. Boyer,et al.  Perceptual organization in computer vision: a review and a proposal for a classificatory structure , 1993, IEEE Trans. Syst. Man Cybern..

[16]  Kim L. Boyer,et al.  Integration, Inference, and Management of Spatial Information Using Bayesian Networks: Perceptual Organization , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  R. Nevatia,et al.  Perceptual Organization for Scene Segmentation and Description , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  W. Eric L. Grimson,et al.  The Combinatorics of Heuristic Search Termination for Object Recognition in Cluttered Environments , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  Anil K. Jain,et al.  Artificial neural networks and statistical pattern recognition : old and new connections , 1991 .

[20]  M. Arbib,et al.  Vision, brain, and cooperative computation , 1990 .

[21]  Narendra Ahuja,et al.  Extraction of early perceptual structure in dot patterns: Integrating region, boundary, and component gestalt , 1989, Comput. Vis. Graph. Image Process..

[22]  D. Jacobs Grouping for Recognition , 1989 .

[23]  Edward M. Riseman,et al.  Token-based extraction of straight lines , 1989, IEEE Trans. Syst. Man Cybern..

[24]  Steven W. Zucker,et al.  Trace Inference, Curvature Consistency, and Curve Detection , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  Richard S. Weiss,et al.  Perceptual Grouping Of Curved Lines , 1989, Other Conferences.

[26]  Anil K. Jain,et al.  Algorithms for Clustering Data , 1988 .

[27]  Steven W. Zucker,et al.  The diversity of perceptual grouping , 1987 .

[28]  Robert C. Bolles,et al.  Perceptual Organization and Curve Partitioning , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[29]  D. Lowe Perceptual organization and visual recognition , 2012 .

[30]  Andrew P. Witkin,et al.  What Is Perceptual Organization For? , 1983, IJCAI.

[31]  A. Witkin,et al.  On the Role of Structure in Vision , 1983 .

[32]  King-Sun Fu,et al.  A Sentence-to-Sentence Clustering Procedure for Pattern Analysis , 1978, IEEE Transactions on Systems, Man, and Cybernetics.

[33]  William E. Wright,et al.  A formalization of cluster analysis , 1973, Pattern Recognit..

[34]  Charles T. Zahn,et al.  Graph-Theoretical Methods for Detecting and Describing Gestalt Clusters , 1971, IEEE Transactions on Computers.

[35]  Enrique H. Ruspini,et al.  A New Approach to Clustering , 1969, Inf. Control..

[36]  Jaakko Hintikka,et al.  On the Logic of Perception , 1969 .

[37]  G. N. Lance,et al.  A General Theory of Classificatory Sorting Strategies: 1. Hierarchical Systems , 1967, Comput. J..

[38]  G. N. Lance,et al.  A general theory of classificatory sorting strategies: II. Clustering systems , 1967, Comput. J..

[39]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[40]  G. N. Lance,et al.  Computer Programs for Hierarchical Polythetic Classification ("Similarity Analyses") , 1966, Comput. J..

[41]  Roger M. Needham,et al.  A Method for Using Computers in Information Classification , 1962, IFIP Congress.