Networks of evolutionary processors: computationally complete normal forms

Networks of evolutionary processors (NEPs, for short) form a bio-inspired language generating computational model that was shown to be equivalent to the model of phrase-structure grammars. In this paper, we analyse different restricted variants of NEPs that preserve the computational power of the general model. We prove that any recursively enumerable language can be generated by a NEP where the derivation rules can be applied at arbitrarily chosen positions, the control of the communication is done by finite automata with at most three states, and either the rule sets are singletons or the underlying graph is a complete graph. If one uses networks with arbitrary underlying graphs and allows the additional application of insertions and deletions only to the right-most or the to left-most position of the derived words for some nodes, then we only need automata with only one state to control the communication in the network. Clearly, this result is optimal; moreover, finite automata with two states are necessary and sufficient in order to generate all the recursively enumerable languages when the derivation rules can be applied only at arbitrarily chosen positions.

[1]  Victor Mitrana,et al.  Solving NP-Complete Problems With Networks of Evolutionary Processors , 2001, IWANN.

[2]  Florin Manea,et al.  Networks of Evolutionary Processors with Subregular Filters , 2011, LATA.

[3]  Victor Mitrana,et al.  Networks of evolutionary processors , 2003, Acta Informatica.

[4]  Geoffrey E. Hinton,et al.  Massively Parallel Architectures for AI: NETL, Thistle, and Boltzmann Machines , 1983, AAAI.

[5]  Gheorghe Paun,et al.  Computing with Membranes , 2000, J. Comput. Syst. Sci..

[6]  Artiom Alhazov,et al.  On the size of computationally complete hybrid networks of evolutionary processors , 2009, Theor. Comput. Sci..

[7]  Victor Mitrana,et al.  Evolutionary systems: a language generating device inspired by evolving communities of cells , 2000, Acta Informatica.

[8]  Victor Mitrana,et al.  Networks of Evolutionary Processors: Results and Perspectives , 2005 .

[9]  Grzegorz Rozenberg,et al.  Handbook of Formal Languages , 1997, Springer Berlin Heidelberg.

[10]  Erzsébet Csuhaj-Varjú,et al.  Networks of Parallel Language Processors , 1997, New Trends in Formal Languages.

[11]  W. Daniel Hillis,et al.  The connection machine , 1985 .

[12]  Bianca Truthe,et al.  On Networks of Evolutionary Processors with Filters Accepted by Two-State-Automata , 2011, Fundam. Informaticae.

[13]  D. Sankoff,et al.  Gene order comparisons for phylogenetic inference: evolution of the mitochondrial genome. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[14]  V. Geffert Normal forms for phrase-structure grammars. Theoretical Informatics and Applications , 1991 .

[15]  Viliam Geffert Normal forms for phrase-structure grammars , 1991, RAIRO Theor. Informatics Appl..

[16]  Artiom Alhazov,et al.  On Networks of Evolutionary Processors with Nodes of Two Types , 2009, Fundam. Informaticae.

[17]  Luciano De Errico,et al.  Towards a new architecture for symbolic processing , 1995 .

[18]  Artiom Alhazov,et al.  Partial Halting and Minimal Parallelism Based on Arbitrary Rule Partitions , 2009, Fundam. Informaticae.