Galactic Chemical Evolution: Carbon through Zinc

We calculate the evolution of heavy-element abundances from C to Zn in the solar neighborhood, adopting our new nucleosynthesis yields. Our yields are calculated for wide ranges of metallicity (Z = 0-Z☉) and the explosion energy (normal supernovae and hypernovae), based on the light-curve and spectra fitting of individual supernovae. The elemental abundance ratios are in good agreement with observations. Among the α-elements, O, Mg, Si, S, and Ca show a plateau at [Fe/H] ≲ -1, while Ti is underabundant overall. The observed abundance of Zn ([Zn/Fe] ~ 0) can be explained only by the high-energy explosion models, as it requires a large contribution of hypernovae. The observed decrease in the odd-Z elements (Na, Al, and Cu) toward low [Fe/H] is reproduced by the metallicity effect on nucleosynthesis. The iron-peak elements (Cr, Mn, Co, and Ni) are consistent with the observed mean values at -2.5 ≲ [Fe/H] ≲ -1, and the observed trend at the lower metallicity can be explained by the energy effect. We also show the abundance ratios and the metallicity distribution functions of the Galactic bulge, halo, and thick disk. Our results suggest that the formation timescale of the thick disk is ~1-3 Gyr.

[1]  K. Nomoto,et al.  Nucleosynthesis yields of core-collapse supernovae and hypernovae, and galactic chemical evolution , 2006, astro-ph/0605725.

[2]  S. Wanajo The rp-Process in Neutrino-driven Winds , 2006, astro-ph/0602488.

[3]  F. Thielemann,et al.  Neutrino-induced nucleosynthesis of A>64 nuclei: the nu p process. , 2005, Physical review letters.

[4]  T. Tsujimoto Implications of elemental abundances in dwarf spheroidal galaxies , 2005, astro-ph/0509834.

[5]  M. Asplund,et al.  New light on stellar abundance analyses: Departures from LTE and homogeneity. , 2005 .

[6]  T. Beers,et al.  THE DISCOVERY AND ANALYSIS OF VERY METAL-POOR STARS IN THE GALAXY , 2005 .

[7]  M. Rees,et al.  Core-Collapse Very Massive Stars: Evolution, Explosion, and Nucleosynthesis of Population III 500-1000 M☉ Stars , 2005, astro-ph/0507593.

[8]  K. Nomoto,et al.  The First Chemical Enrichment in the Universe and the Formation of Hyper Metal-Poor Stars , 2005, Science.

[9]  S. Masuda,et al.  Errata: Sulfur Abundances in Metal-Poor Stars Based on OAO-1.88m/HIDES Spectra , 2005 .

[10]  T. Beers,et al.  Nucleosynthetic signatures of the first stars , 2005, Nature.

[11]  E. H. Olsen,et al.  The Geneva-Copenhagen survey of the Solar neighbourhood - Ages, metallicities, and kinematic properties of ~14 000 F and G dwarfs , 2004, astro-ph/0405198.

[12]  S. Feltzing,et al.  A possible age-metallicity relation in the Galactic thick disk? , 2004, astro-ph/0403591.

[13]  M. Machida,et al.  Is HE 0107–5240 A Primordial Star? The Characteristics of Extremely Metal-Poor Carbon-Rich Stars , 2004, astro-ph/0402589.

[14]  T. Beers,et al.  Oxygen Overabundance in the Extremely Iron-poor Star CS 29498-043 , 2004, astro-ph/0402585.

[15]  T. Beers,et al.  Spectroscopic Studies of Extremely Metal-Poor Stars with the Subaru High Dispersion Spectrograph. II. The r-Process Elements, Including Thorium , 2004, astro-ph/0402298.

[16]  M. Asplund,et al.  Sulphur and zinc abundances in Galactic stars and damped Lyα systems , 2003, astro-ph/0311529.

[17]  T. Beers,et al.  First stars V - Abundance patterns from C to Zn and supernova yields in the early Galaxy , 2003, astro-ph/0311082.

[18]  Thomas Bensby,et al.  Elemental abundance trends in the Galactic thin and thick disks as traced by nearby F and G dwarf stars , 2003 .

[19]  S. Feltzing,et al.  Oxygen trends in the Galactic thin and thick disks , 2003, astro-ph/0310741.

[20]  C. Sneden,et al.  # 2004. The American Astronomical Society. All rights reserved. Printed in U.S.A. GALACTIC EVOLUTION OF Sr, Y, AND Zr: A MULTIPLICITY OF NUCLEOSYNTHETIC PROCESSES , 2003 .

[21]  F. Matteucci The chemical evolution of the galaxy , 2003 .

[22]  K. Nomoto,et al.  Type Ia Supernovae: Progenitors and Diversities , 2003, astro-ph/0308138.

[23]  P. Mazzali,et al.  Hypernovae and Other Black-Hole-Forming Supernovae , 2003, astro-ph/0308136.

[24]  K. Nomoto,et al.  Submitted to the Astrophysical Journal on July 13, 2003 Variations in the Abundance Pattern of Extremely Metal-poor Stars and Nucleosynthesis in Population III Supernovae , 2003 .

[25]  P. Bonifacio,et al.  On the Origin of HE 0107–5240, the Most Iron-deficient Star Presently Known , 2003, astro-ph/0307527.

[26]  B. Gibson,et al.  Deriving the Metallicity Distribution Function of Galactic Systems , 2003, Publications of the Astronomical Society of Australia.

[27]  A. Chieffi,et al.  Evolution, Explosion, and Nucleosynthesis of Core-Collapse Supernovae , 2003, astro-ph/0304185.

[28]  K. Nomoto,et al.  Bipolar Supernova Explosions: Nucleosynthesis and Implications for Abundances in Extremely Metal-Poor Stars , 2003, astro-ph/0304172.

[29]  S. Lucatello,et al.  Abundances for metal-poor stars with accurate parallaxes , I. Basic data , 2003, astro-ph/0303653.

[30]  Garching,et al.  New clues on the calcium underabundance in early‐type galaxies , 2003, astro-ph/0303615.

[31]  B. Ciardi,et al.  Early reionization by the first galaxies , 2003, astro-ph/0302451.

[32]  K. Nomoto,et al.  First-generation black-hole-forming supernovae and the metal abundance pattern of a very iron-poor star , 2003, Nature.

[33]  T. Shigeyama,et al.  Relics of Subluminous Supernovae in Metal-poor Stars , 2003, astro-ph/0301236.

[34]  M. Rampp,et al.  The mechanism of core-collapse supernovae and the ejection of heavy elements , 2002, astro-ph/0212317.

[35]  O. E. Bronson Messer,et al.  The neutrino signal in stellar core collapse and postbounce evolution , 2002, Nuclear Physics A.

[36]  M. Shetrone,et al.  VLT/UVES Abundances in Four Nearby Dwarf Spheroidal Galaxies. II. Implications for Understanding Galaxy Evolution , 2002, astro-ph/0211168.

[37]  R. Rich,et al.  Age and Metallicity Distribution of the Galactic Bulge from Extensive Optical and Near-IR Stellar Photometry , 2002, astro-ph/0210660.

[38]  B. Barbuy,et al.  Keck NIRSPEC Infrared OH Lines: Oxygen Abundances in Metal-poor Stars down to [Fe/H] = –2.9 , 2002, astro-ph/0207660.

[39]  M. Asplund,et al.  Sulphur abundances in disk stars: A correlation with silicon , 2002, astro-ph/0206075.

[40]  M. Asplund,et al.  O/Fe in metal-poor main sequence and subgiant stars ? , 2002, astro-ph/0205372.

[41]  Garching,et al.  Homogeneous age dating of 55 Galactic globular clusters. Clues to the Galaxy formation mechanisms , 2002, astro-ph/0204410.

[42]  R. Rebolo,et al.  Sulphur Abundance in Very Metal-poor Stars , 2001, astro-ph/0107072.

[43]  F. Matteucci,et al.  On the Typical Timescale for the Chemical Enrichment from Type Ia Supernovae in Galaxies , 2001, astro-ph/0105074.

[44]  W. Sargent,et al.  Behavior of Sulfur Abundances in Metal-poor Giants and Dwarfs , 2001, astro-ph/0103481.

[45]  K. Nomoto,et al.  Nucleosynthesis of Zinc and Iron Peak Elements in Population III Type II Supernovae: Comparison with Abundances of Very Metal Poor Halo Stars , 2001, astro-ph/0103241.

[46]  P. Bonifacio,et al.  Oxygen in the Very Early Galaxy , 2001, astro-ph/0101032.

[47]  J. Prochaska,et al.  The Galactic Thick Disk Stellar Abundances , 2000, astro-ph/0008075.

[48]  D. Depoy,et al.  Metallicity of Red Giants in the Galactic Bulge from Near-Infrared Spectroscopy , 2000, astro-ph/0003116.

[49]  K. Nomoto,et al.  Evolution and Nucleosynthesis of Metal-Free Massive Stars , 1999, astro-ph/9912248.

[50]  Koichi Iwamoto,et al.  Nucleosynthesis in Chandrasekhar Mass Models for Type Ia Supernovae and Constraints on Progenitor Systems and Burning-Front Propagation , 1999 .

[51]  K. Nomoto,et al.  A New Evolutionary Path to Type Ia Supernovae: A Helium-rich Supersoft X-Ray Source Channel , 1999, astro-ph/9902303.

[52]  M. C. Begam,et al.  An unusual supernova in the error box of the γ-ray burst of 25 April 1998 , 1998, Nature.

[53]  A. Burrows,et al.  Nucleosynthesis in Type II Supernovae and the Abundances in Metal-poor Stars , 1998, astro-ph/9809307.

[54]  P. Vreeswijk,et al.  A hypernova model for the supernova associated with the γ-ray burst of 25 April 1998 , 1998, Nature.

[55]  K. Nomoto,et al.  Evolution of 3-9 M☉ Stars for Z = 0.001-0.03 and Metallicity Effects on Type Ia Supernovae , 1998, astro-ph/9806336.

[56]  K. Nomoto,et al.  To appear in the Astrophysical Journal, Letter Preprint typeset using L ATEX style emulateapj LOW-METALLICITY INHIBITION OF TYPE IA SUPERNOVAE AND GALACTIC AND COSMIC CHEMICAL EVOLUTION , 1998 .

[57]  G. Israelian,et al.  Oxygen Abundances in Unevolved Metal-poor Stars from Near-Ultraviolet OH Lines , 1998, astro-ph/9806235.

[58]  M. C. Begam,et al.  Discovery of the peculiar supernova 1998bw in the error box of GRB 980425 , 1998, astro-ph/9806175.

[59]  J. Sollerman,et al.  The Peculiar Type II Supernova 1997D: A Case for a Very Low 56Ni Mass , 1998, astro-ph/9803216.

[60]  S. Feltzing,et al.  Abundances in metal-rich stars. Detailed abundance analysis of 47 G and K dwarf stars with [Me/H] > 0.10 dex , 1997, astro-ph/9710315.

[61]  Y. Yoshii,et al.  Early Evolution of the Galactic Halo Revealed from Hipparcos Observations of Metal-poor Stars , 1997, astro-ph/9710151.

[62]  Bernard E. J. Pagel,et al.  Nucleosynthesis and chemical evolution of galaxies , 1997 .

[63]  Alexei V. Filippenko,et al.  Optical spectra of supernovae , 1997 .

[64]  T. Beers,et al.  Extremely Metal-Poor Stars. II. Elemental Abundances and the Early Chemical Enrichment of The Galaxy , 1996 .

[65]  Ø. Grøn Supernovae and Nucleosynthesis , 1996 .

[66]  Izumi Hachisu,et al.  A New Model for Progenitor Systems of Type Ia Supernovae , 1996 .

[67]  C. Chiappini,et al.  The Chemical Evolution of the Galaxy: The Two-Infall Model , 1996, astro-ph/9609199.

[68]  K. Nomoto,et al.  The Lifetime of Type Ia Supernova Progenitors Deduced from the Chemical Evolution in the Solar Neighborhood , 1996 .

[69]  R. M. Rich,et al.  K Giants in Baade's Window. II. The Abundance Distribution , 1996, astro-ph/9604045.

[70]  D. Arnett,et al.  Supernovae and Nucleosynthesis , 1996 .

[71]  F. Thielemann,et al.  Silicon Burning. I. Neutronization and the Physics of Quasi-Equilibrium , 1995, astro-ph/9511088.

[72]  R. Wyse,et al.  Chemistry and Kinematics in the Solar Neighborhood: Implications for Stellar Populations and for Galaxy Evolution , 1995, astro-ph/9509007.

[73]  S. Woosley,et al.  The Evolution and Explosion of Massive Stars. II. Explosive Hydrodynamics and Nucleosynthesis , 1995 .

[74]  R. Ibata,et al.  The outer regions of the Galactic bulge – II. Analysis , 1995, astro-ph/9502037.

[75]  R. Wyse,et al.  A determination of the thick disk chemical abundance distribution: Implications for galaxy evolution , 1994, astro-ph/9411116.

[76]  L. R. Yungelson,et al.  Merging of Binary White Dwarfs Neutron Stars and Black-Holes Under the Influence of Gravitational Wave Radiation , 1994 .

[77]  R. Rich,et al.  The First Detailed Abundance Analysis of Galactic Bulge K Giants in Baade's Window , 1994 .

[78]  Neal E. Blair Geochimica et Cosmochimica Acta , 1992 .

[79]  E. Brocato,et al.  Metallicity distribution and abundance ratios in the stars of the Galactic bulge , 1990 .

[80]  J. B. Laird,et al.  A Survey of Proper-Motion Stars. VII. The Halo Metallicity Distribution Function , 1988 .

[81]  W. Fowler,et al.  Thermonuclear reaction rates V , 1988 .

[82]  K. Nomoto,et al.  Presupernova evolution of massive stars , 1988 .

[83]  B. Twarog The Chemical Evolution of the Galaxy , 1985 .

[84]  R. Zinn The globular cluster system of the galaxy. IV - The halo and disk subsystems , 1985 .

[85]  K. Nomoto,et al.  Accreting white dwarf models for type I supernovae. III. Carbon deflagration supernovae , 1984 .

[86]  P. Woodward,et al.  The Piecewise Parabolic Method (PPM) for Gas Dynamical Simulations , 1984 .

[87]  W. Fowler,et al.  The quest for the origin of the elements. , 1984, Science.

[88]  F. Hartwick The chemical evolution of the galactic halo , 1976 .

[89]  Takuji Tsujimoto,et al.  THE HISTORY OF THE COSMIC SUPERNOVA RATE DERIVED FROM THE EVOLUTION OF THE HOST GALAXIES , 2008 .

[90]  L. Pasquini,et al.  Chemical abundances and mixing in stars in the milky way and its satellites : proceedings of the ESO-Arcetri Workshop held in Castiglione della Pescaia, Italy, 13-17 September, 2004 , 2006 .

[91]  Bruno Leibundgut,et al.  From twilight to highlight : the physics of supernovae : proceedings of the ESO/MPA/MPE workshop held at Garching, Germany, 29-31 July 2002 , 2002 .

[92]  T. Beers,et al.  Copper and Zinc Abundances in Metal-Poor Stars , 2000 .

[93]  S. Vogt,et al.  Oxygen in Unevolved Metal-Poor Stars from Keck Ultraviolet HIRES Spectra , 1999 .

[94]  I. Hachisu,et al.  A Wide Symbiotic Channel to Type Ia Supernovae , 1999, astro-ph/9902304.

[95]  D. Valls-Gabaud From quantum fluctuations to cosmological structures : proceedings of the First Moroccan School of Astrophysics, Casablanca, Morocco, 1-10 December 1996 , 1997 .

[96]  N. Grevesse,et al.  Abundances of the elements: Meteoritic and solar , 1989 .