Technical evolution of liquid crystal displays

Liquid crystal displays (LCDs) have evolved rapidly as a result of fierce competition among the various LCD technologies, and now occupy the largest proportion of the entire display market. The evolution of LCDs continues, with new technologies and new materials in development to replace current devices. This review summarizes the key technologies used in commercially successful LCD products, focusing on the requirements for high-end displays and the benefits of the in-plane switching and multi-domain vertical alignment modes. As in past advances, the development of new materials will play an important role in the continued technical evolution of LCDs.

[1]  T. Scheffer,et al.  A new, highly multiplexable liquid crystal display , 1984 .

[2]  Yi-Pai Huang,et al.  18.3: Additional Refresh Technology (ART) of Advanced‐MVA(AMVA) Mode for High Quality LCDs , 2007 .

[3]  Y. Saitoh,et al.  Optically Compensated In-Plane-Switching-Mode TFT-LCD Panel , 1998 .

[4]  Kang-Hung Liu,et al.  P‐34: Influences of Anti‐reflection and Anti‐glare Surface Treatments on Legibility and Visual Fatigue of Reflective‐type Displays , 2007 .

[5]  Sang-soo Kim,et al.  34.3: A Novel Charge‐Shared S‐PVA Technology , 2007 .

[6]  Sung Min Kim,et al.  Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen , 2007 .

[7]  M. Nakagaki,et al.  Light scattering of spheroids. III. Depolarization of the scattered light , 1974 .

[8]  Frederic J. Kahn,et al.  Electric‐Field‐Induced Orientational Deformation of Nematic Liquid Crystals: Tunable Birefringence , 1972 .

[9]  W. G. Tam Multiple scattering corrections for atmospheric aerosol extinction measurements. , 1980, Applied optics.

[10]  E. P. Raynes Improved contrast uniformity in twisted nematic liquid-crystal electro-optic display devices , 1974 .

[11]  Polymer Light‐Emitting Diode Displays — Device Performance and Applications , 1998 .

[12]  Taiichiro Kurita,et al.  35.1: Moving Picture Quality Improvement for Hold‐type AM‐LCDs , 2001 .

[13]  Youichi Igarashi,et al.  43.3: Summary of Moving Picture Response Time (MPRT) and Futures , 2004 .

[14]  Baek-woon Lee,et al.  40.5L: Late‐News Paper: TFT‐LCD with RGBW Color System , 2003 .

[15]  M. Oh-e In-plane switching electro-optical effect of nematic liquid crystals , 2001 .

[16]  R. French,et al.  Light scattering from red pigment particles: Multiple scattering in a strongly absorbing system , 2001 .

[17]  Yoshihiko Kuroki,et al.  3.4: Improvement of Motion Image Quality by High Frame Rate , 2006 .

[18]  Michael H. Brill,et al.  Colour Engineering: Achieving Device Independent Colour , 2004 .

[19]  M. Schadt,et al.  Voltage-Dependent Optical Activity of a Twisted Nematic Liquid Crystal , 1971 .

[20]  M. Yoneya,et al.  Depolarized light scattering from liquid crystals as a factor for black level light leakage in liquid-crystal displays , 2005 .

[21]  R. Soref Transverse field effects in nematic liquid crystals , 1973 .

[22]  N. Clark,et al.  Submicrosecond bistable electro‐optic switching in liquid crystals , 1980 .

[23]  Sang-soo Kim,et al.  48.2: DCCII: Novel Method for Fast Response Time in PVA Mode , 2004 .

[24]  Koichi Oka,et al.  43.4: Moving Picture Response Time (MPRT) Measurement System , 2004 .

[25]  Thomas Lloyd Credelle,et al.  Development of the PenTile Matrix™ color AMLCD subpixel architecture and rendering algorithms , 2003 .

[26]  John Penczek,et al.  Display daylight ambient contrast measurement methods and daylight readability , 2006 .

[27]  Naoya Katoh,et al.  19.2: xvYCC: A New Standard for Video Systems using Extended‐Gamut YCC Color Space , 2006 .

[28]  Brian H. Berkeley,et al.  New era for TFT‐LCD size and viewing‐angle performance , 2006 .

[29]  M. Schiekel,et al.  Deformation of Nematic Liquid Crystals with Vertical Orientation in Electrical Fields , 1971 .

[30]  S. Kobayashi,et al.  Control and elimination of disclinations in twisted nematic liquid-crystal displays , 1977, IEEE Transactions on Electron Devices.

[31]  A. A. S. Sluyterman,et al.  18.2: Architectural Choices in a Scanning Backlight for Large LCD TVs , 2005 .

[32]  Katsumi Kondo,et al.  Electro‐optical characteristics and switching behavior of the in‐plane switching mode , 1995 .

[33]  Brian H. Berkeley,et al.  New technologies for advanced LCD‐TV performance , 2004 .

[34]  Brian H. Berkeley,et al.  18.1: Distinguished Paper: Novel TFT‐LCD Technology for Motion Blur Reduction Using 120Hz Driving with McFi , 2007 .

[35]  Michiel Adriaanszoon Klompenhouwer,et al.  51.1: Temporal Impulse Response and Bandwidth of Displays in Relation to Motion Blur , 2005 .

[36]  Y. Utsumi,et al.  Analysis of Light Leakage Caused by Color Filter between Crossed Polarizers , 2007 .

[37]  David H. Owens,et al.  Optimisation of mine winder: state-constrained minimum-energy problem , 1974 .

[38]  A. Taflove,et al.  Quantitative analysis of depolarization of backscattered light by stochastically inhomogeneous dielectric particles. , 2005, Optics letters.

[39]  Philip J. Bos,et al.  21.2: Optimum Film Compensation Modes for TN and VA LCDS , 1998 .

[40]  Sunyoup Lee,et al.  Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching , 1998 .

[41]  Jiunn-Shyong Lin,et al.  Optimization on the Thickness of Organic Insulator Layer for Advanced Super-In-Plane Switching Mode Thin-Film-Transistor Liquid Crystal Displays , 2005 .

[42]  R A Kashnow,et al.  Poincaré sphere analysis of liquid crystal optics. , 1977, Applied optics.

[43]  T. Peter Brody The birth and early childhood of active matrix — A personal memoir , 1996 .

[44]  Baek-woon Lee,et al.  41.5L: Late‐News Paper: LCDs: How Fast is Enough? , 2001 .

[45]  Tadashi Ito,et al.  21.4: Development of Low‐Retardation TAC FILM for Color‐Shift Improvement in LCDs , 2006 .

[46]  Friedrich Reinitzer,et al.  Beiträge zur Kenntniss des Cholesterins , 1888 .

[47]  Takahiro Sasaki,et al.  41.1: A Super‐High Image Quality Multi‐Domain Vertical Alignment LCD by New Rubbing‐Less Technology , 1998 .

[48]  S. Mikoshiba,et al.  44.4: RGB‐LED Backlights for LCD‐TVs with 0D, 1D, and 2D Adaptive Dimming , 2006 .

[49]  S. Kobayashi,et al.  Newly Synthesized Polyimide for Aligning Nematic Liquid Crystals Accompanying High Pretilt Angles , 1988 .

[51]  Jeroen Hubert Christoffel Jacobus Stessen,et al.  26.4: Algorithm for Contrast Reserve, Backlight Dimming, and Backlight Boosting on LCD , 2006 .

[52]  Ingrid Heynderickx,et al.  27.2: Trade-off between Luminance and Color in RGBW Displays for Mobile-phone Usage , 2007 .

[53]  M. Schadt,et al.  Surface-Induced Parallel Alignment of Liquid Crystals by Linearly Polymerized Photopolymers , 1992 .

[54]  F. Reinitzer Zur Geschichte der flüssigen Kristalle , 2022 .