Auto Poisoning of the Respiratory Chain by a Quorum-Sensing-Regulated Molecule Favors Biofilm Formation and Antibiotic Tolerance

[1]  R. Meyer,et al.  The role of extracellular DNA in the establishment, maintenance and perpetuation of bacterial biofilms , 2015, Critical reviews in microbiology.

[2]  Franklin L. Nobrega,et al.  Revisiting phage therapy: new applications for old resources. , 2015, Trends in microbiology.

[3]  A. Tzika,et al.  Identification of Anti-virulence Compounds That Disrupt Quorum-Sensing Regulated Acute and Persistent Pathogenicity , 2014, PLoS pathogens.

[4]  Hannah R. Meredith,et al.  Programmed cell death in bacteria and implications for antibiotic therapy. , 2013, Trends in microbiology.

[5]  R. Kümmerli,et al.  Altruism can evolve when relatedness is low: evidence from bacteria committing suicide upon phage infection , 2013, Proceedings of the Royal Society B: Biological Sciences.

[6]  Diogo M. Camacho,et al.  Antibiotic-induced bacterial cell death exhibits physiological and biochemical hallmarks of apoptosis. , 2012, Molecular cell.

[7]  Current Biology , 2012, Current Biology.

[8]  Joanna B. Goldberg,et al.  Analysis of the Pseudomonas aeruginosa Regulon Controlled by the Sensor Kinase KinB and Sigma Factor RpoN , 2011, Journal of bacteriology.

[9]  C. Ryan,et al.  Production of Pseudomonas aeruginosa Intercellular Small Signaling Molecules in Human Burn Wounds , 2011, Journal of pathogens.

[10]  G. O’Toole Microtiter dish biofilm formation assay. , 2011, Journal of visualized experiments : JoVE.

[11]  Ming-xi Hu,et al.  Recent Advancements in Toxin and Antitoxin Systems Involved in Bacterial Programmed Cell Death , 2010, International journal of microbiology.

[12]  S. Häussler Multicellular signalling and growth of Pseudomonas aeruginosa. , 2010, International journal of medical microbiology : IJMM.

[13]  Raymond Lo,et al.  Pseudomonas Genome Database: improved comparative analysis and population genomics capability for Pseudomonas genomes , 2010, Nucleic Acids Res..

[14]  T. Tolker-Nielsen,et al.  An update on Pseudomonas aeruginosa biofilm formation, tolerance, and dispersal. , 2010, FEMS immunology and medical microbiology.

[15]  S. Lory,et al.  The two-component sensor response regulator RoxS/RoxR plays a role in Pseudomonas aeruginosa interactions with airway epithelial cells. , 2010, Microbes and infection.

[16]  G. Mitchell,et al.  Staphylococcus aureus sigma B-dependent emergence of small-colony variants and biofilm production following exposure to Pseudomonas aeruginosa 4-hydroxy-2-heptylquinoline-N-oxide , 2010, BMC Microbiology.

[17]  Natalie Leys,et al.  The response of Cupriavidus metallidurans CH34 to spaceflight in the international space station , 2009, Antonie van Leeuwenhoek.

[18]  T. D. de Kievit Quorum sensing in Pseudomonas aeruginosa biofilms. , 2009, Environmental microbiology.

[19]  U. Brandt,et al.  The Mechanism of Mitochondrial Superoxide Production by the Cytochrome bc1 Complex* , 2008, Journal of Biological Chemistry.

[20]  K. Rice,et al.  Molecular Control of Bacterial Death and Lysis , 2008, Microbiology and Molecular Biology Reviews.

[21]  L. Rahme,et al.  Use of the lambda Red recombinase system to rapidly generate mutants in Pseudomonas aeruginosa , 2008, BMC Molecular Biology.

[22]  S. Carmeli,et al.  A Linear Pentapeptide Is a Quorum-Sensing Factor Required for mazEF-Mediated Cell Death in Escherichia coli , 2007, Science.

[23]  R. Tompkins,et al.  Inhibitors of Pathogen Intercellular Signals as Selective Anti-Infective Compounds , 2007, PLoS pathogens.

[24]  K. Bayles The biological role of death and lysis in biofilm development , 2007, Nature Reviews Microbiology.

[25]  Y. Tsujimoto,et al.  Role of the mitochondrial membrane permeability transition in cell death , 2007, Apoptosis.

[26]  Colin Kleanthous,et al.  Colicin Biology , 2007, Microbiology and Molecular Biology Reviews.

[27]  L. Rahme,et al.  MvfR, a key Pseudomonas aeruginosa pathogenicity LTTR‐class regulatory protein, has dual ligands , 2006, Molecular microbiology.

[28]  G. Kroemer,et al.  Why yeast cells can undergo apoptosis: death in times of peace, love, and war , 2006, The Journal of cell biology.

[29]  J. Armstrong The role of the mitochondrial permeability transition in cell death. , 2006, Mitochondrion.

[30]  Frederick M Ausubel,et al.  Correction for Liberati et al., An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants , 2006, Proceedings of the National Academy of Sciences.

[31]  S. Kjelleberg,et al.  A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms , 2006, Molecular microbiology.

[32]  L. Guy,et al.  Quorum-Sensing-Negative (lasR) Mutants of Pseudomonas aeruginosa Avoid Cell Lysis and Death , 2005, Journal of bacteriology.

[33]  H. Engelberg-Kulka,et al.  Escherichia coli mazEF-mediated cell death as a defense mechanism that inhibits the spread of phage P1 , 2004, Molecular Genetics and Genomics.

[34]  L. Rahme,et al.  Electrospray/mass spectrometric identification and analysis of 4-hydroxy-2-alkylquinolines (HAQs) produced by Pseudomonas aeruginosa , 2004, Journal of the American Society for Mass Spectrometry.

[35]  H. Engelberg-Kulka,et al.  Escherichia coli mazEF-Mediated Cell Death Is Triggered by Various Stressful Conditions , 2004, Journal of bacteriology.

[36]  R. Tompkins,et al.  Analysis of Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines (HAQs) reveals a role for 4-hydroxy-2-heptylquinoline in cell-to-cell communication. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[37]  E. Greenberg,et al.  Identification, Timing, and Signal Specificity of Pseudomonas aeruginosa Quorum-Controlled Genes: a Transcriptome Analysis , 2003, Journal of bacteriology.

[38]  Marina S. Kuznetsova,et al.  Functions Required for Extracellular Quinolone Signaling by Pseudomonas aeruginosa , 2002, Journal of bacteriology.

[39]  David A. D'Argenio,et al.  Autolysis and Autoaggregation in Pseudomonas aeruginosa Colony Morphology Mutants , 2002, Journal of bacteriology.

[40]  T. Donohue,et al.  Pseudomonas aeruginosa RoxR, a response regulator related to Rhodobacter sphaeroides PrrA, activates expression of the cyanide‐insensitive terminal oxidase , 2002, Molecular microbiology.

[41]  Y. Michel-Briand,et al.  The pyocins of Pseudomonas aeruginosa. , 2002, Biochimie.

[42]  L. Rahme,et al.  A quorum sensing-associated virulence gene of Pseudomonas aeruginosa encodes a LysR-like transcription regulator with a unique self-regulatory mechanism , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[43]  S. Orrenius,et al.  Triggering and modulation of apoptosis by oxidative stress. , 2000, Free radical biology & medicine.

[44]  B. Iglewski,et al.  The Pseudomonas Quinolone Signal Regulates rhl Quorum Sensing in Pseudomonas aeruginosa , 2000, Journal of bacteriology.

[45]  P. Moreillon,et al.  Levofloxacin versus ciprofloxacin, flucloxacillin, or vancomycin for treatment of experimental endocarditis due to methicillin-susceptible or -resistant Staphylococcus aureus , 1997, Antimicrobial agents and chemotherapy.

[46]  J. Wells,et al.  Why do many ruminal bacteria die and lyse so quickly? , 1996, Journal of dairy science.

[47]  F. Ausubel,et al.  Common virulence factors for bacterial pathogenicity in plants and animals. , 1995, Science.

[48]  B. Barquera,et al.  The superfamily of heme-copper respiratory oxidases , 1994, Journal of bacteriology.

[49]  A. Crofts,et al.  Characterization of mutations in the cytochrome b subunit of the bc1 complex of Rhodobacter sphaeroides that affect the quinone reductase site (Qc). , 1993, Biochemistry.

[50]  B. Trumpower,et al.  Purification of a reconstitutively active iron-sulfur protein (oxidation factor) from succinate . cytochrome c reductase complex of bovine heart mitochondria. , 1979, The Journal of biological chemistry.

[51]  J. Berden,et al.  Binding of HQNO to beef-heart sub-mitochondrial particles. , 1977, Biochimica et biophysica acta.

[52]  T. Creighton Methods in Enzymology , 1968, The Yale Journal of Biology and Medicine.

[53]  E. C. Slater,et al.  The extinction coefficient of cytochrome c. , 1962, Biochimica et biophysica acta.

[54]  P. Hadley THE VARIATION IN SIZE OF LYTIC AREAS AND ITS SIGNIFICANCE , 1924, Journal of bacteriology.

[55]  L. Rahme,et al.  Assessing Pseudomonas aeruginosa Persister/antibiotic tolerant cells. , 2014, Methods in molecular biology.

[56]  Rachel Lubart,et al.  The Different Behavior of Rutile and Anatase Nanoparticles in Forming Oxy Radicals Upon Illumination with Visible Light: An EPR Study , 2012, Photochemistry and photobiology.

[57]  L. Hancock,et al.  Suicide and fratricide in bacterial biofilms. , 2009, The International journal of artificial organs.

[58]  C. Zierdt Autolytic nature of iridescent lysis inPseudomonas aeruginosa , 2005, Antonie van Leeuwenhoek.

[59]  A. Halestrap,et al.  Cyclosporin A binding in mitochondrial cyclophilin inhibits the permeability transition pore and protects hearts from ischaemia/reperfusion injury , 2004, Molecular and Cellular Biochemistry.

[60]  J. Shapiro Thinking about bacterial populations as multicellular organisms. , 1998, Annual review of microbiology.

[61]  E. Margoliash,et al.  [61] Cytochrome c from vertebrate and invertebrate sources , 1967 .