Nanopore direct RNA sequencing maps an Arabidopsis N6 methyladenosine epitranscriptome

Understanding genome organization and gene regulation requires insight into RNA transcription, processing and modification. We adapted nanopore direct RNA sequencing to examine RNA from a wild-type accession of the model plant Arabidopsis thaliana and a mutant defective in mRNA methylation (m6A). Here we show that m6A can be mapped in full-length mRNAs transcriptome-wide and reveal the combinatorial diversity of cap-associated transcription start sites, splicing events, poly(A) site choice and poly(A) tail length. Loss of m6A from 3’ untranslated regions is associated with decreased relative transcript abundance and defective RNA 3′ end formation. A functional consequence of disrupted m6A is a lengthening of the circadian period. We conclude that nanopore direct RNA sequencing can reveal the complexity of mRNA processing and modification in full-length single molecule reads. These findings can refine Arabidopsis genome annotation. Further, applying this approach to less well-studied species could transform our understanding of what their genomes encode.

[1]  G. Barton,et al.  Detection and mitigation of spurious antisense expression with RoSA , 2019, F1000Research.

[2]  Tao Xu,et al.  The m6A pathway protects the transcriptome integrity by restricting RNA chimera formation in plants , 2019, Life Science Alliance.

[3]  Yasuko Mori,et al.  Direct RNA sequencing on nanopore arrays redefines the transcriptional complexity of a viral pathogen , 2019, Nature Communications.

[4]  Yves Van de Peer,et al.  The draft genomes of five agriculturally important African orphan crops , 2018, GigaScience.

[5]  Roozbeh Dehghannasiri,et al.  Ambiguous splice sites distinguish circRNA and linear splicing in the human genome , 2018, Bioinform..

[6]  N. Schurch,et al.  Detection and mitigation of spurious antisense expression with RoSA [version 1; peer review: 2 approved with reservations] , 2019 .

[7]  Angela N. Brooks,et al.  Nanopore native RNA sequencing of a human poly(A) transcriptome , 2018, bioRxiv.

[8]  Ryan R Wick,et al.  Deepbinner: Demultiplexing barcoded Oxford Nanopore reads with deep convolutional neural networks , 2018, bioRxiv.

[9]  M. Kellner,et al.  NanoPARE: parallel analysis of RNA 5′ ends from low-input RNA , 2018, Genome research.

[10]  B. Gregory,et al.  N6-Methyladenosine Inhibits Local Ribonucleolytic Cleavage to Stabilize mRNAs in Arabidopsis. , 2018, Cell reports.

[11]  G. Barton,et al.  Detection and Mitigation of Spurious Antisense Reads with RoSA , 2018, bioRxiv.

[12]  A. Hunt,et al.  Characterization of mRNA polyadenylation in the apicomplexa , 2018, PloS one.

[13]  Alexander Payne,et al.  BulkVis: a graphical viewer for Oxford nanopore bulk FAST5 files , 2018, Bioinform..

[14]  Juan Carlos Castilla-Rubio,et al.  Earth BioGenome Project: Sequencing life for the future of life , 2018, Proceedings of the National Academy of Sciences.

[15]  Stefan Hüttelmaier,et al.  Recognition of RNA N6-methyladenosine by IGF2BP Proteins Enhances mRNA Stability and Translation , 2018, Nature Cell Biology.

[16]  Heng Li,et al.  Minimap2: pairwise alignment for nucleotide sequences , 2017, Bioinform..

[17]  Daniel R. Garalde,et al.  Highly parallel direct RNA sequencing on an array of nanopores , 2016, Nature Methods.

[18]  Kousuke Hanada,et al.  Light Controls Protein Localization through Phytochrome-Mediated Alternative Promoter Selection , 2017, Cell.

[19]  Gene W. Yeo,et al.  Short Poly(A) Tails are a Conserved Feature of Highly Expressed Genes , 2017, Nature Structural & Molecular Biology.

[20]  Samie R Jaffrey,et al.  Rethinking m6A Readers, Writers, and Erasers. , 2017, Annual review of cell and developmental biology.

[21]  K. Shinozaki,et al.  Novel Stress-Inducible Antisense RNAs of Protein-Coding Loci Are Synthesized by RNA-Dependent RNA Polymerase1[OPEN] , 2017, Plant Physiology.

[22]  Tao Pan,et al.  Dynamic RNA Modifications in Gene Expression Regulation , 2017, Cell.

[23]  Yang Xie,et al.  The U6 snRNA m6A Methyltransferase METTL16 Regulates SAM Synthetase Intron Retention , 2017, Cell.

[24]  Ykä Helariutta,et al.  Identification of factors required for m6A mRNA methylation in Arabidopsis reveals a role for the conserved E3 ubiquitin ligase HAKAI , 2017, The New phytologist.

[25]  H. Hirt,et al.  A high quality Arabidopsis transcriptome for accurate transcript-level analysis of alternative splicing , 2017, Nucleic acids research.

[26]  Rob Patro,et al.  Salmon provides fast and bias-aware quantification of transcript expression , 2017, Nature Methods.

[27]  Yuri Motorin,et al.  Detecting RNA modifications in the epitranscriptome: predict and validate , 2017, Nature Reviews Genetics.

[28]  Anthony O. Olarerin-George,et al.  Mapping m6A at Individual-Nucleotide Resolution Using Crosslinking and Immunoprecipitation (miCLIP). , 2017, Methods in molecular biology.

[29]  Yan Li,et al.  SeqKit: A Cross-Platform and Ultrafast Toolkit for FASTA/Q File Manipulation , 2016, PloS one.

[30]  Marc Salit,et al.  External RNA Controls Consortium Beta Version Update , 2016, Journal of genomics.

[31]  Zhe Liang,et al.  N(6)-Methyladenosine RNA Modification Regulates Shoot Stem Cell Fate in Arabidopsis. , 2016, Developmental cell.

[32]  Måns Magnusson,et al.  MultiQC: summarize analysis results for multiple tools and samples in a single report , 2016, Bioinform..

[33]  Rafael A. Irizarry,et al.  Flexible expressed region analysis for RNA-seq with derfinder , 2015, bioRxiv.

[34]  A. Heger,et al.  UMI-tools: modeling sequencing errors in Unique Molecular Identifiers to improve quantification accuracy , 2016, bioRxiv.

[35]  R. Gregory,et al.  The m(6)A Methyltransferase METTL3 Promotes Translation in Human Cancer Cells. , 2016, Molecular cell.

[36]  F. Thibaud-Nissen,et al.  Araport11: a complete reannotation of the Arabidopsis thaliana reference genome , 2016, bioRxiv.

[37]  Martín Abadi,et al.  TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems , 2016, ArXiv.

[38]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[39]  M. Robinson,et al.  Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences , 2015, F1000Research.

[40]  Arne Klungland,et al.  A majority of m6A residues are in the last exons, allowing the potential for 3′ UTR regulation , 2015, Genes & development.

[41]  Christopher E. Mason,et al.  Single-nucleotide resolution mapping of m6A and m6Am throughout the transcriptome , 2015, Nature Methods.

[42]  Tao Ke,et al.  PTGBase: an integrated database to study tandem duplicated genes in plants , 2015, Database J. Biol. Databases Curation.

[43]  N. Loman,et al.  A complete bacterial genome assembled de novo using only nanopore sequencing data , 2015, Nature Methods.

[44]  John R Yates,et al.  CPSF30 and Wdr33 directly bind to AAUAAA in mammalian mRNA 3′ processing , 2014, Genes & development.

[45]  M. Zavolan,et al.  Reconstitution of CPSF active in polyadenylation: recognition of the polyadenylation signal by WDR33 , 2014, Genes & development.

[46]  Thomas Hackl,et al.  proovread: large-scale high-accuracy PacBio correction through iterative short read consensus , 2014, Bioinform..

[47]  M. Martin-Magniette,et al.  The RNA Helicases AtMTR4 and HEN2 Target Specific Subsets of Nuclear Transcripts for Degradation by the Nuclear Exosome in Arabidopsis thaliana , 2014, PLoS genetics.

[48]  Tomasz Zielinski,et al.  Online period estimation and determination of rhythmicity in circadian data, using the BioDare data infrastructure. , 2014, Methods in molecular biology.

[49]  Zhike Lu,et al.  m6A-dependent regulation of messenger RNA stability , 2013, Nature.

[50]  G. Barton,et al.  Improved Annotation of 3′ Untranslated Regions and Complex Loci by Combination of Strand-Specific Direct RNA Sequencing, RNA-Seq and ESTs , 2013, PloS one.

[51]  J. Harrow,et al.  Assessment of transcript reconstruction methods for RNA-seq , 2013, Nature Methods.

[52]  G. Barton,et al.  Transcription Termination and Chimeric RNA Formation Controlled by Arabidopsis thaliana FPA , 2013, PLoS genetics.

[53]  J. Mathieu,et al.  Temperature-dependent regulation of flowering by antagonistic FLM variants , 2013, Nature.

[54]  W. Shi,et al.  The Subread aligner: fast, accurate and scalable read mapping by seed-and-vote , 2013, Nucleic acids research.

[55]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[56]  Andrew D. Smith,et al.  Site identification in high-throughput RNA-protein interaction data , 2012, Bioinform..

[57]  O. Mathieu,et al.  DNA methylation in an intron of the IBM1 histone demethylase gene stabilizes chromatin modification patterns , 2012, The EMBO journal.

[58]  W. Huber,et al.  Detecting differential usage of exons from RNA-seq data , 2012, Genome research.

[59]  S. Salzberg,et al.  FLASH: fast length adjustment of short reads to improve genome assemblies , 2011, Bioinform..

[60]  M. Salit,et al.  Synthetic Spike-in Standards for Rna-seq Experiments Material Supplemental Open Access License Commons Creative , 2022 .

[61]  Peter J. Bickel,et al.  Measuring reproducibility of high-throughput experiments , 2011, 1110.4705.

[62]  Marcel Martin Cutadapt removes adapter sequences from high-throughput sequencing reads , 2011 .

[63]  William Stafford Noble,et al.  FIMO: scanning for occurrences of a given motif , 2011, Bioinform..

[64]  D. Bartel,et al.  Formation, Regulation and Evolution of Caenorhabditis elegans 3′UTRs , 2010, Nature.

[65]  C Robertson McClung,et al.  Provided for Non-commercial Research and Educational Use Only. Not for Reproduction, Distribution or Commercial Use. the Genetics of Plant Clocks , 2022 .

[66]  G. Simpson,et al.  The spen family protein FPA controls alternative cleavage and polyadenylation of RNA. , 2010, Developmental cell.

[67]  David Tollervey,et al.  Apparent Non-Canonical Trans-Splicing Is Generated by Reverse Transcriptase In Vitro , 2010, PloS one.

[68]  Aaron R. Quinlan,et al.  BIOINFORMATICS APPLICATIONS NOTE , 2022 .

[69]  Mark D. Robinson,et al.  edgeR: a Bioconductor package for differential expression analysis of digital gene expression data , 2009, Bioinform..

[70]  Ning Ma,et al.  BLAST+: architecture and applications , 2009, BMC Bioinformatics.

[71]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[72]  Anthony Hall,et al.  Delayed fluorescence as a universal tool for the measurement of circadian rhythms in higher plants. , 2009, The Plant journal : for cell and molecular biology.

[73]  Mikael Bodén,et al.  MEME Suite: tools for motif discovery and searching , 2009, Nucleic Acids Res..

[74]  Bartek Wilczynski,et al.  Biopython: freely available Python tools for computational molecular biology and bioinformatics , 2009, Bioinform..

[75]  R. Sachidanandam,et al.  Comprehensive splice-site analysis using comparative genomics , 2006, Nucleic acids research.

[76]  Marc L. Salit,et al.  Proposed methods for testing and selecting the ERCC external RNA controls , 2005 .

[77]  L. Reid,et al.  Proposed methods for testing and selecting the ERCC external RNA controls , 2005, BMC Genomics.

[78]  C. R. McClung,et al.  Circadian Control of Messenger RNA Stability. Association with a Sequence-Specific Messenger RNA Decay Pathway1[w] , 2005, Plant Physiology.

[79]  R. Macknight,et al.  Autoregulation of FCA pre‐mRNA processing controls Arabidopsis flowering time , 2003, The EMBO journal.

[80]  Clifford S. Deutschman,et al.  Transcription , 2003, The Quran: Word List (Volume 3).

[81]  K. Akiyama,et al.  Functional Annotation of a Full-Length Arabidopsis cDNA Collection , 2002, Science.

[82]  The Arabidopsis Genome Initiative Analysis of the genome sequence of the flowering plant Arabidopsis thaliana , 2000, Nature.