Didactics of Mathematics: Concepts, Roots, Interactions and Dynamics from France

This chapter analyses specificities of the French field of ‘didactics of mathematics’, questioning its reasons, tracing the geneses of concepts related to artefacts and following influences on, and interactions with the international communities of research. This complex genesis is traced in four sections: a first section on the roots of the didactics of mathematics in France, a second section on two founding theoretical frameworks (the theory of didactical situations of Brousseau, and the theory of conceptual fields of Vergnaud), a third section on the anthropological approach of Chevallard, a fourth focusing on specific approaches dedicated to artefacts and resources in mathematics education. Beyond historical and cultural specificities, the chapter aims to evidence the potential of interactions between teachers and researchers, as well as interactions between researchers in mathematics and mathematics education for improving our understanding of learning and teaching issues in mathematics.

[1]  Roland W. Scholz,et al.  Didactics of mathematics as a scientific discipline , 2002 .

[2]  Michèle Artigue,et al.  Learning Mathematics in a CAS Environment: The Genesis of a Reflection about Instrumentation and the Dialectics between Technical and Conceptual Work , 2002, Int. J. Comput. Math. Learn..

[3]  R. Douady,et al.  Note de synthèse [La didactique des mathématiques en France - Emergence d'un champ scientifique] , 1986 .

[4]  Pierre Vérillon,et al.  Cognition and artifacts: A contribution to the study of though in relation to instrumented activity , 1995 .

[5]  A. Robert,et al.  Le système complexe et cohérent des pratiques des enseignants de mathématiques : une double approche , 2002 .

[6]  B. Belhoste L'enseignement secondaire français et les sciences au début du XXe siècle. La réforme de 1902 des plans d'études et des programmes , 1990 .

[7]  Celia Hoyles,et al.  On the Integration of Digital Technologies into Mathematics Classrooms , 2004, Int. J. Comput. Math. Learn..

[8]  Ferdinando Arzarello,et al.  Comparing, combining, coordinating-networking strategies for connecting theoretical approaches Editorial for ZDM-issue 39 (2008) 2 , 2008 .

[9]  G. Gueudet,et al.  Towards new documentation systems for mathematics teachers? , 2009 .

[10]  Nicolas Balacheff Advanced Educational Technology: Knowledge Revisited , 1996 .

[11]  Luc Trouche,et al.  Managing the Complexity of Human/Machine Interactions in Computerized Learning Environments: Guiding Students’ Command Process through Instrumental Orchestrations , 2004, Int. J. Comput. Math. Learn..

[12]  Y. Chevallard,et al.  Familière et problématique, la figure du professeur , 1997 .

[13]  R. Hembree,et al.  Effects of Hand-Held Calculators in Precollege Mathematics Education: A Meta-Analysis. , 1986 .

[14]  Colette Laborde,et al.  Technology and Mathematics Education: A Multidimensional Study of the Evolution of Research and Innovation , 2003 .

[15]  Claire Margolinas,et al.  Situations, milieux, connaissances : analyse de l'activit e du professeur , 2002 .

[16]  Y. Engeström,et al.  Perspectives on activity theory: Play, learning, and instruction , 1999 .

[17]  Luc Trouche,et al.  The didactical challenge of symbolic calculators : turning a computational device into a mathematical instrument , 2005 .

[18]  P. Drijvers,et al.  Webbing and orchestration. Two interrelated views on digital tools in mathematics education , 2014, 1408.2092.

[19]  G. Brousseau Theory of didactical situations in mathematics , 1997 .

[20]  Luc Trouche,et al.  The Complex Process of Converting Tools into Mathematical Instruments: The Case of Calculators , 1998, Int. J. Comput. Math. Learn..

[21]  G. Brousseau,et al.  Teaching Fractions through Situations: A Fundamental Experiment , 2013 .

[22]  G. Schubring Historical comments on the use of technology and devices in ICMEs and ICMI , 2010 .

[23]  M. Douglas How Institutions Think , 1986 .

[24]  Anthony Ralston,et al.  The Influence of Computers and Informatics on Mathematics and Its Teaching. Science and Technology Education Series, 44. , 1986 .

[25]  Guy Brousseau Des dispositifs Piagétiens… aux situations didactiques , 2012 .

[26]  Raymond Duval A Cognitive Analysis of Problems of Comprehension in a Learning of Mathematics , 2006 .

[27]  M. Menghini,et al.  The first century of the International Commission on Mathematical Instruction (1908-2008). Reflecting and shaping the world of mathematics education , 2008 .

[28]  Luc Trouche,et al.  Mathematics learning and tools from theoretical, historical and practical points of view: the productive notion of mathematics laboratories , 2010 .

[29]  Heinz Steinbring L'indépendance stochastique , 1986 .

[30]  Y. Chevallard,et al.  La sensibilité de l'activité mathématique aux ostensifs: Objet d'étude et problématique , 1999 .

[31]  G. Gueudet,et al.  Technologies et évolution des pratiques enseignantes : études de cas et éclairages théoriques , 2011 .

[32]  Paul Drijvers,et al.  One episode, two lenses , 2013 .

[33]  Nicolas Balacheff,et al.  Didactical Complexity of Computational Environments for the Learning of Mathematics , 1999, Int. J. Comput. Math. Learn..

[34]  K.P.E. Gravemeijer,et al.  The teacher and the tool: instrumental orchestrations in the technology-rich mathematics classroom , 2010 .

[35]  G. Vergnaud,et al.  The Theory of Conceptual Fields , 2009, Human Development.

[36]  Guy Brousseau,et al.  Vingt ans de didactique des mathématiques en France : hommage à Guy Brousseau et Gérard Vergnaud , 1994 .