Metal oxide hollow nanostructures: Fabrication and Li storage performance

[1]  A. Witze Moon and planet names spark battle , 2013, Nature.

[2]  Ya‐Xia Yin,et al.  A robust composite of SnO2 hollow nanospheres enwrapped by graphene as a high-capacity anode material for lithium-ion batteries , 2012 .

[3]  Hua Wang,et al.  SnO2 hollow nanospheres enclosed by single crystalline nanoparticles for highly efficient dye-sensitized solar cells , 2012 .

[4]  Z. Wen,et al.  Hollow porous LiMn₂O₄ microcubes as rechargeable lithium battery cathode with high electrochemical performance. , 2012, Small.

[5]  Yuyan Shao,et al.  Nanostructured carbon for energy storage and conversion , 2012 .

[6]  J. Xue,et al.  Synthesis of porous hollow Fe3O4 beads and their applications in lithium ion batteries , 2012 .

[7]  Xiaofei Yang,et al.  Flexible morphology-controlled synthesis of monodisperse α-Fe2O3 hierarchical hollow microspheres and their gas-sensing properties , 2012 .

[8]  Lidong Li,et al.  One-step in situ synthesis of SnO2/graphene nanocomposites and its application as an anode material for Li-ion batteries. , 2012, ACS applied materials & interfaces.

[9]  O. Jacquet,et al.  Titelbild: A Diagonal Approach to Chemical Recycling of Carbon Dioxide: Organocatalytic Transformation for the Reductive Functionalization of CO2 (Angew. Chem. 1/2012) , 2012 .

[10]  Zhangxian Chen,et al.  Facile synthesis of CuO hollow nanospheres assembled by nanoparticles and their electrochemical performance , 2011 .

[11]  Lixia Yuan,et al.  SnO2-based composite coaxial nanocables with multi-walled carbon nanotube and polypyrrole as anode materials for lithium-ion batteries , 2011 .

[12]  Yu‐Guo Guo,et al.  A facile synthesis and lithium storage properties of Co3O4–C hybrid core-shell and hollow spheres , 2011 .

[13]  S. Mathur,et al.  Synthesis, Characterization, and Gas Sensing Properties of Porous Nickel Oxide Nanotubes , 2011 .

[14]  X. Lou,et al.  Quasiemulsion-templated formation of α-Fe2O3 hollow spheres with enhanced lithium storage properties. , 2011, Journal of the American Chemical Society.

[15]  Lin Guo,et al.  Stoichiometry-Controlled Fabrication of CuxS Hollow Structures With Cu2O as Sacrificial Templates , 2011 .

[16]  Xiaoping Song,et al.  Cu2O Template Strategy for the Synthesis of Structure-Definable Noble Metal Alloy Mesocages , 2011 .

[17]  Wei Zhou,et al.  The self-assembly of porous microspheres of tin dioxide octahedral nanoparticles for high performance lithium ion battery anode materials , 2011 .

[18]  Xiuli Wang,et al.  Self-supported hydrothermal synthesized hollow Co3O4 nanowire arrays with high supercapacitor capacitance , 2011 .

[19]  Deren Yang,et al.  Self-templating synthesis of SnO2-carbon hybrid hollow spheres for superior reversible lithium ion storage. , 2011, ACS applied materials & interfaces.

[20]  J. Tu,et al.  Mesoporous Co3O4 monolayer hollow-sphere array as electrochemical pseudocapacitor material. , 2011, Chemical communications.

[21]  X. Lou,et al.  Controlled synthesis of hierarchical NiO nanosheet hollow spheres with enhanced supercapacitive performance , 2011 .

[22]  R. Ruoff,et al.  Nanostructured reduced graphene oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries. , 2011, ACS nano.

[23]  X. Lou,et al.  Fast formation of SnO2 nanoboxes with enhanced lithium storage capability. , 2011, Journal of the American Chemical Society.

[24]  Chun-hua Chen,et al.  Hollow Co3O4 thin films as high performance anodes for lithium-ion batteries , 2011 .

[25]  L. Archer,et al.  Formation of SnO2 hollow nanospheres inside mesoporous silica nanoreactors. , 2011, Journal of the American Chemical Society.

[26]  J. Tu,et al.  Hollow microspheres of NiO as anode materials for lithium-ion batteries , 2010 .

[27]  Jinghong Li,et al.  Preparation of SnO2-Nanocrystal/Graphene-Nanosheets Composites and Their Lithium Storage Ability , 2010 .

[28]  Zhiyu Wang,et al.  Engineering nonspherical hollow structures with complex interiors by template-engaged redox etching. , 2010, Journal of the American Chemical Society.

[29]  J. Cabana,et al.  Beyond Intercalation‐Based Li‐Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions , 2010, Advanced materials.

[30]  Da Chen,et al.  Graphene-based materials in electrochemistry. , 2010, Chemical Society reviews.

[31]  Yu‐Guo Guo,et al.  Programmed Fabrication of Metal Oxides Nanostructures Using Dual Templates to Spatially Disperse Metal Oxide Nanocrystals , 2010 .

[32]  Yu‐Guo Guo,et al.  Synthesis and Lithium Storage Properties of Co3O4 Nanosheet‐Assembled Multishelled Hollow Spheres , 2010 .

[33]  Liquan Chen,et al.  MnO powder as anode active materials for lithium ion batteries , 2010 .

[34]  J. Tu,et al.  Hierarchical porous cobalt oxide array films prepared by electrodeposition through polystyrene sphere template and their applications for lithium ion batteries , 2010 .

[35]  Jian Jiang,et al.  Kirkendall-effect-based growth of dendrite-shaped CuO hollow micro/nanostructures for lithium-ion battery anodes , 2010 .

[36]  C. H. Chen,et al.  An understanding of anomalous capacity of nano-sized CoO anode materials for advanced Li-ion battery , 2010 .

[37]  A. Manthiram,et al.  Dense core-shell structured SnO2/C composites as high performance anodes for lithium ion batteries. , 2010, Chemical communications.

[38]  Jun Zhang,et al.  Cobalt Oxide Ordered Bowl-Like Array Films Prepared by Electrodeposition through Monolayer Polystyrene Sphere Template and Electrochromic Properties , 2010 .

[39]  Jinghong Li,et al.  Hierarchically structured carbon nanocomposites as electrode materials for electrochemical energy storage, conversion and biosensor systems , 2009 .

[40]  J. Zou,et al.  A general single-source route for the preparation of hollow nanoporous metal oxide structures. , 2009, Angewandte Chemie.

[41]  Wei Zhao,et al.  One-Dimensional Chainlike Arrays of Fe3O4 Hollow Nanospheres Synthesized by Aging Iron Nanoparticles in Aqueous Solution , 2009 .

[42]  Changwen Hu,et al.  Facile Synthesis, Characterization, and Microwave Absorbability of CoO Nanobelts and Submicrometer Spheres , 2009 .

[43]  Y. Kang,et al.  Morphological transformation of Co(OH)2 microspheres from solid to flowerlike hollow core-shell structures. , 2009, Chemistry.

[44]  Arava Leela Mohana Reddy,et al.  Coaxial MnO2/carbon nanotube array electrodes for high-performance lithium batteries. , 2009, Nano letters.

[45]  Young Woon Kim,et al.  Synthesis of uniform hollow oxide nanoparticles through nanoscale acid etching. , 2008, Nano letters.

[46]  Shuyan Gao,et al.  Green Fabrication of Hierarchical CuO Hollow Micro/Nanostructures and Enhanced Performance as Electrode Materials for Lithium-ion Batteries , 2008 .

[47]  L. Archer,et al.  Preparation of SnO2/carbon composite hollow spheres and their lithium storage properties , 2008 .

[48]  Yueming Li,et al.  Carbon-Coated Macroporous Sn2P2O7 as Anode Materials for Li-Ion Battery , 2008 .

[49]  Jian Gong,et al.  Synthesis of Manganese Oxide Hollow Urchins with a Reactive Template of Carbon Spheres , 2008 .

[50]  Ning Wang,et al.  Facile One-Pot Solution Phase Synthesis of SnO2 Nanotubes , 2008 .

[51]  Jun Chen,et al.  Facile Synthesis of Nanoporous γ-MnO2 Structures and Their Application in Rechargeable Li-Ion Batteries , 2008 .

[52]  Jun Liu,et al.  Thermal Oxidation Strategy towards Porous Metal Oxide Hollow Architectures , 2008 .

[53]  Minhua Cao,et al.  Ligand-Assisted Hydrothermal Synthesis of Hollow Fe2O3 Urchin-like Microstructures and Their Magnetic Properties , 2008 .

[54]  Weiguo Song,et al.  Tin‐Nanoparticles Encapsulated in Elastic Hollow Carbon Spheres for High‐Performance Anode Material in Lithium‐Ion Batteries , 2008 .

[55]  Qiang He,et al.  Controlled Preparation of MnO2 Hierarchical Hollow Nanostructures and Their Application in Water Treatment , 2008 .

[56]  L. Archer,et al.  Self‐Supported Formation of Needlelike Co3O4 Nanotubes and Their Application as Lithium‐Ion Battery Electrodes , 2008 .

[57]  T. P. Kumar,et al.  Materials for next-generation lithium batteries , 2008 .

[58]  Bing Tan,et al.  Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability. , 2008, Nano letters.

[59]  G. Campet,et al.  Hydrothermal Synthesis and Pseudocapacitance Properties of α-MnO2 Hollow Spheres and Hollow Urchins , 2007 .

[60]  L. Archer,et al.  Double‐Walled SnO2 Nano‐Cocoons with Movable Magnetic Cores , 2007 .

[61]  Qiang Wang,et al.  In Situ Growth of Mesoporous SnO2 on Multiwalled Carbon Nanotubes: A Novel Composite with Porous‐Tube Structure as Anode for Lithium Batteries , 2007 .

[62]  S. Feng,et al.  Preparation of Cu2O Hollow Nanospheres under Reflux Conditions , 2007 .

[63]  Chun-hua Chen,et al.  Dandelion-like hollow microspheres of CuO as anode material for lithium-ion batteries , 2007 .

[64]  Jiaguo Yu,et al.  Template-free hydrothermal synthesis of CuO/Cu2O composite hollow microspheres , 2007 .

[65]  Dong Wang,et al.  Hematite Hollow Spindles and Microspheres: Selective Synthesis, Growth Mechanisms, and Application in Lithium Ion Battery and Water Treatment , 2007 .

[66]  S. Yen,et al.  Characterization of electrolytic Co3O4 thin films as anodes for lithium-ion batteries , 2007 .

[67]  Wenzhong Wang,et al.  Template synthesis of multishelled Cu2O hollow spheres with a single-crystalline shell wall. , 2007, Angewandte Chemie.

[68]  Kenneth S Suslick,et al.  Sonochemical synthesis of nanosized hollow hematite. , 2007, Journal of the American Chemical Society.

[69]  E. Wang,et al.  Template free fabrication of hollow hematite spheres via a one-pot polyoxometalate-assisted hydrolysis process , 2007 .

[70]  Lihong Dong,et al.  Template-Free Synthesis and Photocatalytic Properties of Novel Fe2O3 Hollow Spheres , 2007 .

[71]  Yiying Wu,et al.  Freestanding mesoporous quasi-single-crystalline CO3O4 nanowire arrays. , 2006, Journal of the American Chemical Society.

[72]  Yong Wang,et al.  Template‐Free Synthesis of SnO2 Hollow Nanostructures with High Lithium Storage Capacity , 2006 .

[73]  Ping Liu,et al.  Template Synthesis of Hollow Metal Oxide Fibers with Hierarchical Architecture , 2006 .

[74]  C. Feng,et al.  Low-temperature synthesis of alpha-MnO2 hollow urchins and their application in rechargeable Li+ batteries. , 2006, Inorganic chemistry.

[75]  J. Lee,et al.  Crystalline carbon hollow spheres, crystalline carbon-SnO2 hollow spheres, and crystalline SnO2 hollow spheres: Synthesis and performance in reversible Li-ion storage , 2006 .

[76]  Zhenzhong Yang,et al.  General synthetic route toward functional hollow spheres with double-shelled structures. , 2005, Angewandte Chemie.

[77]  Huigang Zhang,et al.  Fabrication of beta-Ni(OH)2 and NiO hollow spheres by a facile template-free process. , 2005, Chemical communications.

[78]  Yong Wang,et al.  Polycrystalline SnO2 Nanotubes Prepared via Infiltration Casting of Nanocrystallites and Their Electrochemical Application , 2005 .

[79]  J. Lee,et al.  Microwave-assisted synthesis of SnO2–graphite nanocomposites for Li-ion battery applications , 2005 .

[80]  I. Fragalà,et al.  Free-Standing Copper(II) Oxide Nanotube Arrays through an MOCVD Template Process , 2004 .

[81]  R. Mokaya,et al.  Zeolite ZSM‐5 with Unique Supermicropores Synthesized Using Mesoporous Carbon as a Template , 2004 .

[82]  Huaiyong Zhu,et al.  Preparation and Electrochemical Performance of Polycrystalline and Single Crystalline CuO Nanorods as Anode Materials for Li Ion Battery , 2004 .

[83]  Gabor A. Somorjai,et al.  Formation of Hollow Nanocrystals Through the Nanoscale Kirkendall Effect , 2004, Science.

[84]  L. Personnaz,et al.  Combined XRD, EXAFS, and Mössbauer Studies of the Reduction by Lithium of α ­ Fe2 O 3 with Various Particle Sizes , 2003 .

[85]  Kirk J. Ziegler,et al.  Synthesis of Metal and Metal Oxide Nanowire and Nanotube Arrays within a Mesoporous Silica Template , 2003 .

[86]  A. Dong,et al.  General synthesis of mesoporous spheres of metal oxides and phosphates. , 2003, Journal of the American Chemical Society.

[87]  C. Julien Lithium intercalated compounds: Charge transfer and related properties , 2003 .

[88]  Petr Novák,et al.  Insertion Electrode Materials for Rechargeable Lithium Batteries , 1998 .

[89]  J. Dahn,et al.  Electrochemical and In Situ X‐Ray Diffraction Studies of the Reaction of Lithium with Tin Oxide Composites , 1997 .

[90]  Tsutomu Miyasaka,et al.  Tin-Based Amorphous Oxide: A High-Capacity Lithium-Ion-Storage Material , 1997 .

[91]  A. Smigelskas Zinc diffusion in alpha brass , 1947 .