The body-size dependence of mutual interference

The parameters that drive population dynamics typically show a relationship with body size. By contrast, there is no theoretical or empirical support for a body-size dependence of mutual interference, which links foraging rates to consumer density. Here, I develop a model to predict that interference may be positively or negatively related to body size depending on how resource body size scales with consumer body size. Over a wide range of body sizes, however, the model predicts that interference will be body-size independent. This prediction was supported by a new dataset on interference and consumer body size. The stabilizing effect of intermediate interference therefore appears to be roughly constant across size, while the effect of body size on population dynamics is mediated through other parameters.

[1]  V. Savage,et al.  Temperature dependence of trophic interactions are driven by asymmetry of species responses and foraging strategy. , 2014, The Journal of animal ecology.

[2]  W. Terra,et al.  Biological, nutritional, and histochemical basis for improving an artificial diet for Bracon hebetor Say (Hymenoptera: Braconidae). , 2006, Neotropical entomology.

[3]  G. Saha,et al.  A comparative study of predation of three aquatic heteropteran bugs on Culex quinquefasciatus larvae , 2007, Limnology.

[4]  Theunis Piersma,et al.  Digestively constrained predators evade the cost of interference competition , 2004 .

[5]  Werner Ulrich,et al.  Consumer-resource body-size relationships in natural food webs. , 2006, Ecology.

[6]  N. Mills,et al.  Ratio dependence in the functional response of insect parasitoids: evidence from Trichogramma minutum foraging for eggs in small host patches , 2004 .

[7]  Takehito Yoshida,et al.  A DIRECT, EXPERIMENTAL TEST OF RESOURCE VS. CONSUMER DEPENDENCE , 2005 .

[8]  U. Brose,et al.  Allometric functional response model: body masses constrain interaction strengths. , 2010, The Journal of animal ecology.

[9]  Eugene H. Studier,et al.  Live mass, water content, nitrogen and mineral levels in some insects from south-central lower michigan , 1992 .

[10]  Jens O. Riede,et al.  Stepping in Elton's footprints: a general scaling model for body masses and trophic levels across ecosystems. , 2011, Ecology letters.

[11]  J. F. Gilliam,et al.  FUNCTIONAL RESPONSES WITH PREDATOR INTERFERENCE: VIABLE ALTERNATIVES TO THE HOLLING TYPE II MODEL , 2001 .

[12]  Ali Asghar Talebi,et al.  Host stage preference, functional response and mutual interference of Aphidius matricariae (Hym.: Braconidae: Aphidiinae) on Aphis fabae (Hom.: Aphididae) , 2007 .

[13]  J. Cronin,et al.  Superparasitism and mutual interference in the egg parasitoid Anagrus delicatus (Hymenoptera: Mymaridae) , 1993 .

[14]  M. Hassell,et al.  New Inductive Population Model for Insect Parasites and its Bearing on Biological Control , 1969, Nature.

[15]  S. Hassan THE AREA OF DISCOVERY OF APANTELES GLOMERATUS (HYMENOPTERA: BRACONIDAE), PTEROMALUS PUPARUM (PTEROMALIDAE) AND BRACHYMERIA REGINA (CHALCIDIDAE) , 1976 .

[16]  Samraat Pawar,et al.  Dimensionality of consumer search space drives trophic interaction strengths , 2012, Nature.

[17]  J. Delong,et al.  Size-density scaling in protists and the links between consumer-resource interaction parameters. , 2012, The Journal of animal ecology.

[18]  J. Harwood,et al.  Influence of prey availability on seasonal fluctuation in body condition in the wolf spider, Pardosa milvina (Araneae: Lycosidae) , 2013 .

[19]  P. Yodzis,et al.  Body Size and Consumer-Resource Dynamics , 1992, The American Naturalist.

[20]  John P. DeLong,et al.  Mutual interference is common and mostly intermediate in magnitude , 2011, BMC Ecology.

[21]  S. Bacher,et al.  Functional responses: a question of alternative prey and predator density. , 2007, Ecology.

[22]  R. Peterson,et al.  Wolves, Moose, and the Allometry of Population Cycles , 1984, Science.

[23]  Florian D. Schneider,et al.  Body mass constraints on feeding rates determine the consequences of predator loss. , 2012, Ecology letters.

[24]  S. Hansson,et al.  Ratio-dependent functional responses—tests with the zooplanktivore Mysis mixta , 2001 .

[25]  J. Delong,et al.  A dynamic explanation of size-density scaling in carnivores. , 2012, Ecology.

[26]  John D. Reeve,et al.  Predation and bark beetle dynamics , 1997, Oecologia.

[27]  R. Arditi,et al.  Does mutual interference always stabilize predator-prey dynamics? A comparison of models. , 2004, Comptes rendus biologies.

[28]  J. Cronin,et al.  SUBSTANTIALLY SUBMAXIMAL OVIPOSITION RATES BY A MYMARID EGG PARASITOID IN THE LABORATORY AND FIELD , 1993 .

[29]  R. Edwards The Area of Discovery of Two Insect Parasites, Nasonia vitripennis (Walker) and Trichogramma evanescens Westwood, in an Artificial Environment , 1961, The Canadian Entomologist.

[30]  Predator interference alters foraging behavior of a generalist predatory arthropod , 2014, Oecologia.

[31]  R. Peters,et al.  Relationships between body size and some life history parameters , 2004, Oecologia.

[32]  Rolf O. Peterson,et al.  THE EFFECT OF PREY AND PREDATOR DENSITIES ON WOLF PREDATION , 2002 .

[33]  Matthijs Vos,et al.  Functional responses modified by predator density , 2009, Oecologia.

[34]  D B Mertz,et al.  Cannibalism of the pupal stage by adult flour beetles: an experiment and a stochastic model. , 1968, Biometrics.

[35]  M. Mistri Foraging behaviour and mutual interference in the Mediterranean shore crab, Carcinus aestuarii, preying upon the immigrant mussel Musculista senhousia , 2003 .

[36]  R. Kfir Functional response to host density by the egg parasiteTrichogramma pretiosum , 1983, Entomophaga.

[37]  C. S. Holling The components of prédation as revealed by a study of small-mammal prédation of the European pine sawfly. , 1959 .

[38]  Michael W. McCoy,et al.  Predicting natural mortality rates of plants and animals. , 2008, Ecology letters.

[39]  U. Brose,et al.  Warming effects on consumption and intraspecific interference competition depend on predator metabolism. , 2012, The Journal of animal ecology.

[40]  W. L. Trent,et al.  Carapace Width-Total Weight Relation of Blue Crabs from Galveston Bay, Texas , 1970 .

[41]  J. Delong,et al.  Linked exploitation and interference competition drives the variable behavior of a classic predator–prey system , 2013 .

[42]  J. Helgen Feeding rate inhibition in crowded Daphnia pulex , 1987, Hydrobiologia.

[43]  K. Leonardsson,et al.  Prey–predator size‐dependent functional response: derivation and rescaling to the real world , 2004 .

[44]  R. Lipcius,et al.  Density-dependent foraging and mutual interference in blue crabs preying upon infaunal clams , 1991 .

[45]  Melanie E. Moses,et al.  Shifts in metabolic scaling, production, and efficiency across major evolutionary transitions of life , 2010, Proceedings of the National Academy of Sciences.

[46]  Ulrich Brose,et al.  Body‐mass constraints on foraging behaviour determine population and food‐web dynamics , 2010 .

[47]  R. Law,et al.  How does abundance scale with body size in coupled size-structured food webs? , 2009, The Journal of animal ecology.

[48]  D. A. Chant,et al.  Experimental studies on acarine predator–prey interactions: the effects of predator density on prey consumption, predator searching efficiency, and the functional response to prey density (Acarina: Phytoseiidae) , 1982 .

[49]  W. Calder Size, Function, and Life History , 1988 .

[50]  The mechanisms of interference competition: two experiments on foraging waders , 2005 .

[51]  R. Arditi,et al.  The wolves of Isle Royale display scale-invariant satiation and ratio-dependent predation on moose , 2005 .

[52]  John P. DeLong,et al.  Predator–prey dynamics and the plasticity of predator body size , 2014 .

[53]  R. Cooper,et al.  Estimation of insect biomass by length and width , 1993 .

[54]  R. Arditi,et al.  Underestimation of mutual interference of predators , 1990, Oecologia.

[55]  G. Salt,et al.  Predation in an Experimental Protozoan Population (Woodruffia-Paramecium) , 1967 .

[56]  Andrew D. Taylor HOST EFFECTS ON FUNCTIONAL AND OVIPOSITIONAL RESPONSES OF BRACON HEBETOR , 1988 .

[57]  J. L. Gittleman,et al.  A Common Rule for the Scaling of Carnivore Density , 2002, Science.

[58]  Philip H. Crowley,et al.  Functional Responses and Interference within and between Year Classes of a Dragonfly Population , 1989, Journal of the North American Benthological Society.

[59]  D. A. Chant,et al.  EFFECTS OF PREDATOR AND PREY DENSITIES ON INTERACTIONS BETWEEN GOLDFISH AND DAPHNIA PULEX (DE GEER) , 1966 .

[60]  Louis-Félix Bersier,et al.  An experimental test of the nature of predation: neither prey‐ nor ratio‐dependent , 2005 .