暂无分享,去创建一个
[1] Frank Harary,et al. Graph Theory , 2016 .
[2] M. Yuan,et al. Model selection and estimation in regression with grouped variables , 2006 .
[3] Martin J. Wainwright,et al. Sharp Thresholds for High-Dimensional and Noisy Sparsity Recovery Using $\ell _{1}$ -Constrained Quadratic Programming (Lasso) , 2009, IEEE Transactions on Information Theory.
[4] Tong Zhang,et al. On the Consistency of Feature Selection using Greedy Least Squares Regression , 2009, J. Mach. Learn. Res..
[5] Tong Zhang. Some sharp performance bounds for least squares regression with L1 regularization , 2009, 0908.2869.
[6] Kenji Fukumizu,et al. Statistical Consistency of Kernel Canonical Correlation Analysis , 2007 .
[7] László Györfi,et al. A Probabilistic Theory of Pattern Recognition , 1996, Stochastic Modelling and Applied Probability.
[8] Wei-Yin Loh,et al. Classification and regression trees , 2011, WIREs Data Mining Knowl. Discov..
[9] Manik Varma,et al. More generality in efficient multiple kernel learning , 2009, ICML '09.
[10] Francis R. Bach,et al. Consistency of the group Lasso and multiple kernel learning , 2007, J. Mach. Learn. Res..
[11] Leo Breiman,et al. Random Forests , 2001, Machine Learning.
[12] Michael I. Jordan,et al. Multiple kernel learning, conic duality, and the SMO algorithm , 2004, ICML.
[13] Charles A. Micchelli,et al. Learning the Kernel Function via Regularization , 2005, J. Mach. Learn. Res..
[14] Chong Gu. Smoothing Spline Anova Models , 2002 .
[15] Volker Roth,et al. The generalized LASSO , 2004, IEEE Transactions on Neural Networks.
[16] Nello Cristianini,et al. Kernel Methods for Pattern Analysis , 2003, ICTAI.
[17] Alexander J. Smola,et al. Boîte à outils SVM simple et rapide , 2005, Rev. d'Intelligence Artif..
[18] Kenji Fukumizu,et al. Kernels on Structured Objects Through Nested Histograms , 2006, NIPS.
[19] Claude Lemaréchal,et al. Practical Aspects of the Moreau-Yosida Regularization: Theoretical Preliminaries , 1997, SIAM J. Optim..
[20] Alexander J. Smola,et al. Learning with kernels , 1998 .
[21] Nello Cristianini,et al. A statistical framework for genomic data fusion , 2004, Bioinform..
[22] Willem Stuursma. Image classification using ROIs and Multiple Kernel Learning , 2009 .
[23] David J. Field,et al. Sparse coding with an overcomplete basis set: A strategy employed by V1? , 1997, Vision Research.
[24] G. Wahba,et al. Some results on Tchebycheffian spline functions , 1971 .
[25] E.J. Candes,et al. An Introduction To Compressive Sampling , 2008, IEEE Signal Processing Magazine.
[26] N. Meinshausen,et al. LASSO-TYPE RECOVERY OF SPARSE REPRESENTATIONS FOR HIGH-DIMENSIONAL DATA , 2008, 0806.0145.
[27] P. Bickel,et al. SIMULTANEOUS ANALYSIS OF LASSO AND DANTZIG SELECTOR , 2008, 0801.1095.
[28] H. Markowitz. The optimization of a quadratic function subject to linear constraints , 1956 .
[29] Leo Breiman,et al. Classification and Regression Trees , 1984 .
[30] Francis R. Bach,et al. Structured Variable Selection with Sparsity-Inducing Norms , 2009, J. Mach. Learn. Res..
[31] Stephen P. Boyd,et al. Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.
[32] Trevor Darrell,et al. The Pyramid Match Kernel: Efficient Learning with Sets of Features , 2007, J. Mach. Learn. Res..
[33] H. Zou. The Adaptive Lasso and Its Oracle Properties , 2006 .
[34] Alexander J. Smola,et al. Learning the Kernel with Hyperkernels , 2005, J. Mach. Learn. Res..
[35] Junzhou Huang,et al. Learning with structured sparsity , 2009, ICML '09.
[36] H. Zou,et al. Regularization and variable selection via the elastic net , 2005 .
[37] Gunnar Rätsch,et al. Large Scale Multiple Kernel Learning , 2006, J. Mach. Learn. Res..
[38] Bernhard Schölkopf,et al. Kernel Methods in Computational Biology , 2005 .
[39] Katya Scheinberg,et al. Efficient SVM Training Using Low-Rank Kernel Representations , 2002, J. Mach. Learn. Res..
[40] M. Yuan,et al. On the non‐negative garrotte estimator , 2007 .
[41] Yuesheng Xu,et al. Universal Kernels , 2006, J. Mach. Learn. Res..
[42] R. Tibshirani,et al. Least angle regression , 2004, math/0406456.
[43] Zaïd Harchaoui,et al. Image Classification with Segmentation Graph Kernels , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.
[44] Larry A. Wasserman,et al. SpAM: Sparse Additive Models , 2007, NIPS.
[45] Michael A. Saunders,et al. Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..
[46] Nello Cristianini,et al. Classification using String Kernels , 2000 .
[47] Robert L. Patten. Combinatorics: Topics, Techniques, Algorithms , 1995 .
[48] G. Wahba. Spline models for observational data , 1990 .
[49] Zaïd Harchaoui,et al. Testing for Homogeneity with Kernel Fisher Discriminant Analysis , 2007, NIPS.
[50] Nello Cristianini,et al. Learning the Kernel Matrix with Semidefinite Programming , 2002, J. Mach. Learn. Res..
[51] R. Tibshirani. Regression Shrinkage and Selection via the Lasso , 1996 .
[52] Ingo Steinwart,et al. On the Influence of the Kernel on the Consistency of Support Vector Machines , 2002, J. Mach. Learn. Res..
[53] Shai Ben-David,et al. Learning Bounds for Support Vector Machines with Learned Kernels , 2006, COLT.
[54] John C. Platt,et al. Fast training of support vector machines using sequential minimal optimization, advances in kernel methods , 1999 .
[55] Yves Grandvalet,et al. Composite kernel learning , 2008, ICML '08.
[56] C. Campbell,et al. Generalization bounds for learning the kernel , 2009 .
[57] Michael I. Jordan,et al. Computing regularization paths for learning multiple kernels , 2004, NIPS.
[58] Michael I. Jordan,et al. A Direct Formulation for Sparse Pca Using Semidefinite Programming , 2004, SIAM Rev..
[59] P. Massart,et al. Concentration inequalities and model selection , 2007 .
[60] Catherine Blake,et al. UCI Repository of machine learning databases , 1998 .
[61] Carl E. Rasmussen,et al. Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.
[62] Rajat Raina,et al. Efficient sparse coding algorithms , 2006, NIPS.
[63] Manik Varma,et al. Learning The Discriminative Power-Invariance Trade-Off , 2007, 2007 IEEE 11th International Conference on Computer Vision.
[64] Karim Lounici. Sup-norm convergence rate and sign concentration property of Lasso and Dantzig estimators , 2008, 0801.4610.
[65] Adrian S. Lewis,et al. Convex Analysis And Nonlinear Optimization , 2000 .
[66] Ben Taskar,et al. Joint covariate selection and joint subspace selection for multiple classification problems , 2010, Stat. Comput..
[67] Peng Zhao,et al. On Model Selection Consistency of Lasso , 2006, J. Mach. Learn. Res..
[68] O. Chapelle. Second order optimization of kernel parameters , 2008 .
[69] Michael I. Jordan,et al. Predictive low-rank decomposition for kernel methods , 2005, ICML.
[70] Hao Helen Zhang,et al. Component selection and smoothing in multivariate nonparametric regression , 2006, math/0702659.
[71] J. Friedman. Greedy function approximation: A gradient boosting machine. , 2001 .
[72] Francis R. Bach,et al. Exploring Large Feature Spaces with Hierarchical Multiple Kernel Learning , 2008, NIPS.
[73] 丸山 徹. Convex Analysisの二,三の進展について , 1977 .
[74] J. Freidman,et al. Multivariate adaptive regression splines , 1991 .
[75] Ming Yuan,et al. Sparse Recovery in Large Ensembles of Kernel Machines On-Line Learning and Bandits , 2008, COLT.
[76] A. Rinaldo,et al. On the asymptotic properties of the group lasso estimator for linear models , 2008 .
[77] Volker Roth,et al. The Group-Lasso for generalized linear models: uniqueness of solutions and efficient algorithms , 2008, ICML '08.
[78] Yoav Freund,et al. A decision-theoretic generalization of on-line learning and an application to boosting , 1995, EuroCOLT.
[79] Massimiliano Pontil,et al. Taking Advantage of Sparsity in Multi-Task Learning , 2009, COLT.
[80] P. Zhao,et al. Grouped and Hierarchical Model Selection through Composite Absolute Penalties , 2007 .
[81] A. Berlinet,et al. Reproducing kernel Hilbert spaces in probability and statistics , 2004 .
[82] K. Lange,et al. Coordinate descent algorithms for lasso penalized regression , 2008, 0803.3876.