On Multivalued Symmetric Functions

This note describes an algorithm for identifying multivalued symmetric switching functions using parallel processing. Some general properties of multivalued symmetric functions have been investigated. The mixed multivalued symmetric switching function is defined and an algorithm for identifying it is also presented.

[1]  Emil L. Post Introduction to a General Theory of Elementary Propositions , 1921 .

[2]  R. D. Berlin Synthesis of N-Valued Switching Circuits , 1958, IRE Trans. Electron. Comput..

[3]  Shmuel Winograd,et al.  On the Time Required to Perform Addition , 1965, JACM.

[4]  Yates A. Keir Algebraic Properties of 3-Valued Compositions , 1964, IEEE Trans. Electron. Comput..

[5]  Willis H. Ware Soviet Computer Technologyߞ1959 , 1960, IRE Trans. Electron. Comput..

[6]  Shmuel Winograd,et al.  On the Time Required to Perform Multiplication , 1967, JACM.

[7]  Marshall C. Pease Matrix Inversion Using Parallel Processing , 1967, JACM.

[8]  M. Yoeli,et al.  Logical Design of Ternary Switching Circuits , 1965, IEEE Trans. Electron. Comput..

[9]  C. Y. Lee,et al.  Several-valued combinational switching circuits , 1956, Transactions of the American Institute of Electrical Engineers, Part I: Communication and Electronics.