Haar Transform Approximations of Parameter-Dependent Lyapunov and Riccati Equations Matrix Sign-Based Solutions

This paper deals with Lyapunov and Riccati equations for parameter-dependent systems. Such equations arise naturally in analysis, control and model reduction methods for parametric models. The new proposed techniques hinge upon two seminal tools: -The matrix sign function best rational approximation. -The Haar wavelet transform theory. The approximations of parameter-dependent Lyapunov and Riccati equations solutions are didactically presented. Original and significant norm bounds on the computation errors estimates are presented in the context of matrix sign-based solutions. Some examples are given to corroborate the validity of the proposed results.

[1]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[2]  Enrique S. Quintana-Ortí,et al.  Parallel solution of Riccati matrix equations with the matrix sign function , 1998, Autom..

[3]  Guang-Ren Duan,et al.  A Parametric Lyapunov Equation Approach to Low Gain Feedback Design for Discrete-time Systems , 2008 .

[4]  P. Benner,et al.  Initializing Newton's method for discrete-time algebraic Riccati equations using the butterfly SZ algorithm , 1999, Proceedings of the 1999 IEEE International Symposium on Computer Aided Control System Design (Cat. No.99TH8404).

[5]  Hamid Reza Karimi,et al.  A computational method for solving optimal control and parameter estimation of linear systems using Haar wavelets , 2004, Int. J. Comput. Math..

[6]  A. Laub,et al.  The matrix sign function , 1995, IEEE Trans. Autom. Control..

[7]  Philippe Chevrel,et al.  A matrix sign function framework for robust stability analysis and parameter-dependent Lyapunov and Riccati equalities , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[8]  A. Laub,et al.  Matrix-sign algorithms for Riccati equations , 1992 .

[9]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[10]  J. D. Roberts,et al.  Linear model reduction and solution of the algebraic Riccati equation by use of the sign function , 1980 .

[11]  S. Mallat A wavelet tour of signal processing , 1998 .

[12]  Roland W. Freund,et al.  Computing Fundamental Matrix Decompositions Accurately via the Matrix Sign Function in Two Iterations: The Power of Zolotarev's Functions , 2016, SIAM Rev..

[13]  Alan J. Laub,et al.  Positive and negative solution of dual Riccati equations by matrix sign function iteration , 1989 .

[14]  Alan J. Laub,et al.  Error bounds for Newton refinement of solutions to algebraic riccati equations , 1990, Math. Control. Signals Syst..

[15]  Hamid Reza Karimi A computational method for optimal control problem of time-varying state-delayed systems by Haar wavelets , 2006, Int. J. Comput. Math..

[16]  Für Dynamik Komplexer,et al.  Balanced Truncation of Linear Time-Invariant Systems at a Single Frequency , 2013 .

[17]  Michel Verhaegen,et al.  Distributed Control: A Sequentially Semi-Separable Approach for Spatially Heterogeneous Linear Systems , 2009, IEEE Transactions on Automatic Control.

[18]  NGUYEN THANH SON,et al.  Solving Parameter-Dependent Lyapunov Equations Using the Reduced Basis Method with Application to Parametric Model Order Reduction , 2017, SIAM J. Matrix Anal. Appl..

[19]  Alan J. Laub,et al.  On Scaling Newton's Method for Polar Decomposition and the Matrix Sign Function , 1990 .

[20]  Samir Bennani,et al.  An Overview of System Modelling in LFT Form , 2002 .